簡易檢索 / 詳目顯示

研究生: 倪宏博
Hung-Po Ni
論文名稱: 使用二元視窗切換技術之十二位元漸進式類比數位轉換器
Design and Implementation of 12-bit SAR ADCs with Binary-Window DAC Switching Technique
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 曾偉信
Wei-Xin Zeng
范振麟
Zhen-Lin Fan
陳亮仁
Liang-Ren Chen
陳伯奇
Bo-Ji Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 91
中文關鍵詞: 類比數位轉換器高解析度
外文關鍵詞: ADC, SAR
相關次數: 點閱:295下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現兩個連續漸近式類比數位轉換器。第一個是在0.18微米CMOS製程實現一個十二位元、每秒二千萬次取樣的連續漸進式類比數位轉換器;第二個是在55奈米低功耗CMOS製程實現一個十二位元、每秒六千萬次取樣的連續漸進式類比數位轉換器。為了避免使用大的電容值來滿足數位類比轉換電路的線性度要求,我提出兩個切換技術,分別是二元視窗切換以及電容交換技術,來解決線性度的問題。可以在不增加電容值情況下,提升整體類比數位轉換器的線性度,以滿足十二位元的精準度。
    第一個晶片是在聯電的0.18微米製程實現,晶片面積為2.25平方毫米。其中,類比數位轉換器核心面積為0.1平方毫米。在1.5伏特供應電壓以及10MHz取樣頻率之下,他的功率消耗是1.17毫瓦。量測到的有效位元(ENOB)為9.3位元,主諧波比在使用電容交換技術之後可以達到86.6dB。對量測結果作分析與偵錯之後,它的改版晶片已在2017年六月下線。
    第二個晶片是在聯電的55奈米低功耗CMOS製程實現。類比數位轉換器核心面積為156×230平方毫米。在1.2伏特供應電壓以及60MHz取樣頻率之下他的功率消耗是1.14毫瓦。後模擬得到的訊噪失真比為67.7dB,主諧波比為90dB。這個晶片已經在2017年五月下線。


    This dissertation implements two successive-approximation registers (SAR) analog-to-digital converters (ADCs). The first is a 12-bit 20-MS/s SAR ADC in UMC 0.18µm CMOS. The second is a 12-bit 60-MS/s SAR ADC in UMC 55nm LPCMOS. In order to avoid large capacitance to meet the linearity requirement for DAC, we propose two switching techniques. There are the binary-window DAC switching technique and the capacitor-swapping technique to solve the problem of linearity.
    The first SAR ADC was fabricated in UMC 0.18µm CMOS. The die area is 2.25mm2 and ADC uses a chip area of approximately 0.1mm2. The ADC consumes 1.17 mW from 1.5V supply voltage, and effective number of bit (ENOB) is 9.3 bits at 10 MS/s. The SFDR with capacitor swapping technique is 86.6dB. Though the analysis and results, the revised chip had been taped-out in June, 2017.
    The second SAR ADC was fabricated in 55 nm LPCMOS and achieves 67.7 dB SNDR at 60 MS/s with only 1.14 mW of power consumption, leading to a FoM of 8.69 fJ/conversion-step and SFDR achieves 90dB. The ADC uses a chip area of approximately156×230 μm2. This chip had been taped-out in May, 2017.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Target Specifications 2 1.3 Organization of the Thesis 3 Chapter 2 Background Survey 4 2.1 Background Introduction 4 2.2 Prior Works 5 2.2.1 Digital Calibration 5 2.2.2 Variable Window Technique 7 2.2.3 Two-Step Decision DAC Switching 9 2.2.4 Comparison of Prior ADC Architectures 11 Chapter 3 ADC Architecture 12 3.1 DAC Errors by the Capacitor Mismatch 13 3.2 Binary-Window DAC Switching 14 3.3 Capacitor Swapping [2] 18 3.4 Swapping Binary-Window DAC Switching 21 Chapter 4 A 12-bit 20-MS/s SAR ADC in 180nm CMOS 24 4.1 Sample and Hold Circuit 24 4.2 Comparator 30 4.3 Digital-to-Analog Converter 33 4.3.1 Capacitor Array Size Decision and Architecture 33 4.3.2 DAC Switching Scheme 34 4.4 SAR control logic 36 4.4.1 Self-Timed Loop 36 4.4.2 Binary-Window Controller 38 4.4.3 Encoder 38 4.5 Layout Consideration. 42 4.6 Post-Layout Simulation Results 44 4.7 Measurement Results 46 4.7.1 Measurement Environment 46 4.7.2 Experimental Results 48 4.8 Brief Summary 50 Chapter5 A 12-bit 60-MS/s SAR ADC in 55nm LP CMOS 51 5.1 Sample and Hold Circuit 51 5.2 Comparator 56 5.3 Digital-to-Analog Converter 59 5.3.1 Capacitor Array Decision and Its Architecture 59 5.3.2 DAC Switching Scheme 60 5.4 SAR Control Logic 62 5.4.1 Self-Time Loop 62 5.4.2 Binary-Window Controller 63 5.4.3 Encoder 63 5.5 Layout consideration 66 5.6 Post-Layout Simulation 68 5.7 Performance Summary 71 Chapter 6 Conclusions and Future Works 73 6.1 Conclusions 73 6.2 Future Works 74 Reference 75

    [1] Y.-H. Chung, “The Swapping Binary-Window DAC Switching Technique for SAR ADCs,” in Proc. IEEE Int. Symp. Circuits and Systems, 2013, pp.2231–2234.
    [2] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
    [3] W. Liu, P. Huang, and Y. Chiu, “A 12 b 22.5/45 MS/s 3.0 mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Papers, pp.380–381, Feb. 2010.
    [4] J. McNeill, M. Coln, and B. Larivee, “A Split-ADC Architecture for Deterministic Digital Background Calibration of a 16b 1MS/s ADC,” ISSCC Dig.Tech. Papers, pp. 276–278, Feb. 2005.
    [5] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, and Chung-Ming Huang, “A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18μm CMOS,” in IEEE Symposium on VLSI Circuits, Jun. 2010, pp. 241-242.
    [6] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Yin-Zu Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS Process,” in IEEE Symposium on VLSI Circuits, Jun. 2009, pp. 236-237.
    [7] Y.-H. Chung, C.-W. Yen, and M.-H. Wu, “A 24-µW 12-b 1-MS/s SAR ADC With Two-Step Decision DAC Switching in 110-nm CMOS,” IEEE Trans. on VLSI Systems, vol. 24, no. 11, pp. 3334-3344, Nov. 2016.
    [8] Yin-Zu Lin, Soon-Jyh Chang, Ya-Ting Shyu, Guan-Ying Huang, and Chun-Cheng Liu, “A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 69–72.
    [9] Meng-Hsuan Wu, Yung-Hui Chung, and Hung-Sung Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157-160.
    [10] Jon Guerber, Hariprasath Venkatram, Taehwan Oh, and Un-Ku Moon, “Enhanced SAR ADC Energy Efficiency from the Early Reset Merged Capacitor Switching Algorithm,” Proc. of IEEE Int. Sym. On Circuits and Systems, ISCAS, pp.2361-2364, 2012.
    [11] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. Bu, and C. C. Tsai, “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387
    [12] M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio Σ∆ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 349–355, Mar. 2001.
    [13] Bernhard Wicht, “Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier,” IEEE Solid-State Circuits, vol. 39,no. 7, pp. 1148-1158 Jul.2004
    [14] M. Miyahara, Y.Asada,D. Paik, and A.Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272.
    [15] C.-H. Lin and K. Bult, “A 10-b 500-MSample/s CMOS DAC in 0.6mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958,Dec. 1998.
    [16] C.-P. Huang, H.-W. Ting, S.-J. Chang, “Analysis of Nonideal Behaviors Based on INL/DNL Plots for SAR ADCs,” IEEE Instrumentation and Measurement Society, vol. 65, issue 8, pp. 1804-1817, Aug. 2016.
    [17] B. Murmann, “ADC Performance Survey 1997-2016,” [Online]. Available: http://www.standford.edu/~murmann/adcsurvey.html.
    [18] C.-H. Lin and K. Bult, “A 10-b 500-MSample/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958,Dec. 1998.
    [19] B. P. Ginsburg and A. P. Chandrakasan, “A 500 MS/s 5 b ADC in 65 nm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2006, pp. 140–141.
    [20] G. Promitzer, “12-bit low-power fully differential switched capacitor noncalibrating successive approximation ADC with 1 MS/s, ”IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1138–1143, Jul. 2001
    [21] Shrivastava, “12-bit non-calibrating noise-immune redundant SAR ADC for system-on-a-chip,” in Proc. IEEE Int. Symp. Circuits Syst., May 2006, pp. 1515–1518.
    [22] Y. Chen et al., “Split capacitor DAC mismatch calibration in successive approximation ADC,” in Proc. IEEE Custom Integr. Circuits Conf., Sep. 2009, pp. 279–282.
    [23] Behzad Razavi, “Design of Analog CMOS Integrated Circuits” Int ed,
    [24] A. S. Sedra and K. C. Smith, “Microelectronic Circuits,” 4th. Ed., Oxford University Press, 1998.
    [25] C.-H. Kuo and T.-H. Kuo, “Capacitor-swapping cyclic A/D conversion techniques with reduced mismatch sensitivity,” IEEE Trans. CircuitsSyst. II, Exp. Briefs, vol. 55, no. 12, pp. 1219–1223, Dec. 2008.
    [26] F. Kuttner, “A 1.2 V 10 b 20 MSample/s non-binary successive approximation ADC in 0.13 µm CMOS,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2002, pp. 176–177.
    [27] Y. Wu, X. Cheng, and X. Zeng, “A split-capacitor Vcm-based capacitor switching scheme for low-power SAR ADCs,” in Proc. IEEE Int. Symp. Circuits Syst., May 2013, pp. 2014–2017.
    [28] A. Shrivastava, “12-bit non-calibrating noise-immune redundant SAR ADC for system-on-a-chip,” in Proc. IEEE Int. Symp. Circuits Syst., May 2006, pp. 1515–1518.
    [29] Byeong-Woo Koo, et al., “A Single Amplifier-Based 12-bit 100MS/s 1V 19mW 0.13um CMOS ADC with Various Power and Area Minimized Circuit Techniques,” IEICE Trans. Electron., vol. E94-C, no. 8, pp.1282-1288, 2011.
    [30] A. H. Chang, H.-S. Lee, and D. Boning, "A 12b 50MS/s 2.1mW SAR ADC with Redundancy and Digital Background Calibration," in IEEE ESSCIRC Dig. Tech. Paper, 2013, pp. 109-112.
    [31] T. Morie, T. Miki, K. Matsukawa, Y. Bando, T. Okumoto, K. Obata, S. Sakiyama, and S. Dosho, "A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR Enhancement Techniques Utilizing Noise," in IEEE ISSCC Dig. Tech. Paper, Feb. 2013, pp.272–273.
    [32] C. C. Lee, C.-Y. Lu, R. Narayanaswamy, and J. B. Rizk, "A 12b 70MSps SAR ADC with Digital Startup Calibration in 14nm CMOS," Symp. on VLSI Circuits Dig. Tech. Papers, June 2015, pp. 62-63
    [33] C.-C. Liu, "A 0.35mW 12b 100MS/s SAR-Assisted Digital Slop ADC in 28nm CMOS," in IEEE ISSCC Dig. Tech. Paper, Feb. 2016, pp.462–463.
    [34] K.-H. Chang and C.-C. Hsieh, “A 12 bit 150 MS/s 1.5 mW SAR ADC with Adaptive Radix DAC in 40 nm CMOS, ” in Proc. IEEE Asian Solid-State Circuits Conf., 2016, pp. 157–160.

    QR CODE