簡易檢索 / 詳目顯示

研究生: 朱漢森
Betsha Tizazu Abreham
論文名稱: 直接式互動在沉浸式與透視式虛擬實境的成效研究與比較
Investigation and Comparison of Direct Interaction Performance in Immersive and See-Through Virtual Reality Displays
指導教授: 林久翔
Chiu-Hsiang Lin
口試委員: 江行全
Jiang, Bernard C.
曹譽鐘
Yu-Chung Tsao
Tien-Lung Sun
孫天龍
石裕川
Yuh-Chuan Shih
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 125
中文關鍵詞: 互動表現頭戴式顯示器立體視覺寬營顯示器
外文關鍵詞: Interaction performance, Head mounted display, Stereoscopic widescreen display
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究探討虛擬顯示器於直接互動表現 (包含: 近身距離判斷、任務完成時間、運動學參數、以及舒適度指標)的效應。依變數包含兩種虛擬顯示方式、三種近身判斷距離、以及三種困難度指標。共12位正常視力者 (平均年齡29.8 ± 3.45歲)參與,使用立體視覺寬營顯示器以及頭戴式顯示器操作實驗。研究中動作系統及問卷分別用於蒐集定位資料以及參與者之動暈症狀資訊。研究結果顯示使用立體視覺寬營顯示器比頭戴顯示器可提供更精準之近身距離判斷、更高的峰值速度與更短的反應時間。然而,兩種顯示方式在任務完成時間、有效移動時間、確認時間、費茲定理表現、動暈症狀則無顯著差異。另外,近身距離的增加亦會改善精確度及延長任務完成時間。任務困難度的增加會延長任務完成時間但不影響精確度。除此之外,受試者操作於高困難度任務的峰值速度及反應時間顯著低於中及低困難度狀況。此結果將有助於對於選購兩種不同虛擬顯示方式的考量。一般而言,對於在冠狀平面上操作且需要高精準深度距離與良好的運動學結果的任務,立體視覺寬營顯示器將是建議的選項。頭戴顯示器更適用於需要精準的物件間距離判斷情境下,例如: 建築或醫療影像視覺化的狀況。另外,此結果對於發展直接互動情境的介面設計人員亦將有所助益。


    This study explored the virtual display effects on direct interaction performance metrics such as accuracy of egocentric distance judgment, task completion time, kinematic parameters, and comfort. Two virtual displays, three egocentric distances, and three indices of difficulty were the dependent variables considered in the study. Twelve participants between the ages of 23 and 35 years (M = 29.8 ± 3.45 years of age) with normal visual acuity performed a pointing movement in a stereoscopic widescreen display (SWD) and a head-mounted display (HMD). A motion system and a symptom questionnaire were used to collect the position data and severity of cybersickness symptoms respectively. The findings revealed that egocentric distance accuracy was better with the stereoscopic widescreen display than with the head mounted display. The outcomes also revealed that peak velocity and reaction time differed significantly between the two VR displays, where peak velocity was higher and reaction time was shorter with the SWD than with the HMD. However, no significant differences in task completion time, effective movement time, confirmation time, throughput, and cybersickness were observed between the two VR displays. Also, increasing the egocentric distance improved accuracy and prolonged the task completion time. Besides, increasing the task difficulty lengthened the task completion time yet didn't influence the accuracy. Moreover, both peak velocity and reaction time were significantly lower at high ID than at low and medium IDs. For the consumers of the two virtual reality displays, the results are relevant and insightful. In general, for tasks that need high depth accuracy and better kinematics results in the coronal plane, the stereoscopic widescreen display may be preferred. On the other hand, an HMD might be appropriate for applications that require exocentric distance judgment accuracies, such as architecture or medical visualization. Moreover, when designing interfaces that enable users to interact directly, developers may refer to these findings.

    Table of Contents ABSTRACT iv LIST OF TABLES x LIST OF FIGURES xi LIST OF EQUATION xiii CHAPTER 1 1 1. INTRODUCTION 1 1.1. Background 1 1.2. Study Motivation 5 1.3. Study Objective 6 1.4. Scope of the Research 6 1.5. Hypotheses 8 1.6. Organization of the Thesis 10 CHAPTER 2 13 2. THE BASIC CONCEPTS OF VR 13 2.1. Virtual Reality 13 2.2. How 3D Image Formed 14 2.3. History of VR 16 2.4. VR Display Taxonomy 18 2.5. HMD and SWD 20 2.6. VR and AR Application 22 2.7. Challenges of VR 28 2.8. Basics of Visual Distance Perception. 29 2.9. Interaction 31 2.10. Direct and Indirect Interaction Methods 31 2.11. Interaction Performance 32 2.12. Factors that Affect Interaction Performance 33 2.13. Interaction performance metrics and taxonomy 35 2.14. Accuracy- Exocentric Distance 36 2.15. Accuracy- Egocentric Distance 36 2.16. Kinematics 40 2.17. Visual Fatigue and Discomfort 42 CHAPTER 3 44 3. EXPERIMENTAL DESIGN 44 3.1. Participants 44 3.2. Independent Variables 44 3.3. Dependent Variables 46 3.3.1. The Accuracy of Distance Estimation 46 3.3.2. Task Completion Time 47 3.3.3. Simulator Sickness Questionnaire Score 47 3.3.4. Kinematics Variables 48 3.4. Stimuli and Apparatus 50 3.5. Procedure 52 CHAPTER 4 54 4. RESULT 54 4.1. Accuracy- Egocentric Distance 54 4.1.1. Accuracy with Respect to Egocentric Distance 54 4.1.2. Accuracy with Respect to Indices of Difficulty 55 4.2. Task Completion Time and Throughput 56 4.3. Kinematics Results 58 4.3.1. Reaction time 58 4.3.2. Effective movement time 59 4.3.3. Confirmation time 60 4.3.4. Velocity profile 60 4.3.5. Peak velocity 61 4.4. Simulator Sickness Questionnaire score 63 CHAPTER 5 65 5. DISCUSSIONS 65 5.1. Accuracy- Egocentric Distance 65 5.2. Movement Time/ Fitts Law 67 5.3. Kinematics 69 5.3.1. Reaction Time 69 5.3.2. Effective Moment and Confirmation Time 70 5.3.3. Peak velocity 72 5.3.4. Velocity Profiles 72 CHAPTER 6 76 6. CONCLUSION AND FUTURE DIRECTIONS 76 6.1. Conclusion 76 6.2. Research Contributions 77 6.3. Future Directions 78 REFERENCE 80 APPENDIXES 91 APPENDIX A – Experiment condition 91 APPENDIX B – Participants personal information 92 APPENDIX C – Participant consent form 93 APPENDIX D – Description of apparatus 96 APPENDIX E – Complete Analysis of Variance (ANOVA) 98

    Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: a review. NeuroRehabilitation, 25(1), 29-44. doi:10.3233/nre-2009-0497
    Alessio, M., & Paul, M. S. (2009). Estimation of Distances in Virtual Environments Using Size Constancy. International Journal of Virtual Reality, 8(1). doi:10.20870/IJVR.2009.8.1.2714
    Alexandrova, I. V., Teneva, P. T., Rosa, S. d. l., Kloos, U., Bulthoff, H. H., & Mohler, B. J. (2010). Egocentric distance judgments in a large screen display immersive virtual environment. Paper presented at the Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, California.
    Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., & Fimm, B. (2008). Depth Perception in Virtual Reality: Distance Estimations in Peri- and Extrapersonal Space. CyberPsychology & Behavior, 11(1), 9-15. doi:10.1089/cpb.2007.9935
    Arnaldi, B., Guitton, P., & Moreau, G. (2018). Virtual Reality and Augmented Reality. Great Britain and the United States: ISTE Ltd and John Wiley & Sons, Inc.
    Beggs, W. D. A., & Howarth, C. I. (1970). Movement Control in a Repetitive Motor Task. Nature, 225(5234), 752-753. doi:10.1038/225752a0
    Bilyk, V. (2019). AUGMENTED AND VIRTUAL REALITY IN EDUCATION. Retrieved from https://theappsolutions.com/blog/development/ar-vr-in-education/
    Bingham, G. P., Zaal, F., Robin, D., & Shull, J. A. (2000). Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback. Journal of Experimental Psychology: Human Perception and Performance, 26(4), 1436-1460. doi:10.1037/0096-1523.26.4.1436
    Boeldt, D., McMahon, E., McFaul, M., & Greenleaf, W. (2019). Using Virtual Reality Exposure Therapy to Enhance Treatment of Anxiety Disorders: Identifying Areas of Clinical Adoption and Potential Obstacles. Frontiers in psychiatry, 10, 773-773. doi:10.3389/fpsyt.2019.00773
    Bowman, D. A. (1999). Interaction Techniques for Common Taskso in Immersive Virtual Environments Design, Evaluation, And Application.
    Bowman, D. A. (2002). Handbook of Virtual Environments: Design, Implementation, and Applications. 278-313.
    Bowman, D. A., & Hodges, L. F. (1999). Formalizing the Design, Evaluation, and Application of Interaction Techniques for Immersive Virtual Environments. Journal of Visual Languages and Computing, 37-53.
    Bruder, G., Argelaguet, F., Olivier, A. H., & Lecuyer, A. (2016). CAVE Size Matters: Effects of Screen Distance and Parallax on Distance Estimation in Large Immersive Display Setups. Presence-Teleoperators and Virtual Environments, 25(1), 1-16. doi:10.1162/PRES_a_00241
    Bryksin, G. (2020). Five Innovative Ways You Can Use Virtual Reality in the Real Estate Business.
    Buck, L. E., Young, M. K., & Bodenheimer, B. (2018). A comparison of distance estimation in HMD-based virtual environments with different HMD-based conditions. ACM Transactions on Applied Perception, 15(3). doi:10.1145/3196885
    Cakmakci, O., & Rolland, J. (2006). Head-Worn Displays: A Review. Journal of Display Technology, 2(3), 199-216.
    Cha, Y., & Myung, R. (2013). Extended Fitts' law for 3D pointing tasks using 3D target arrangements. International Journal of Industrial Ergonomics, 43(4), 350-355. doi:https://doi.org/10.1016/j.ergon.2013.05.005
    Cheng, D., Wang, Y., Hua, H., & Talha, M. M. (2009). Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics, 48(14), 2655-2668. doi:10.1364/AO.48.002655
    Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in psychology, 9, 2086-2086. doi:10.3389/fpsyg.2018.02086
    Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil, 29(14), 1139-1146; discussion 1147-1152. doi:10.1080/09638280600960909
    Crossman, E. R. F. W., & Goodeve, P. J. (1983). Feedback control of hand-movement and Fitts' law. The Quarterly Journal of Experimental Psychology Section A, 35(2), 251-278. doi:10.1080/14640748308402133
    Cutting, J. E., & Vishton, P. M. (1995a). Chapter 3 - Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth*. In W. Epstein & S. Rogers (Eds.), Perception of Space and Motion (pp. 69-117). San Diego: Academic Press.
    Cutting, J. E., & Vishton, P. M. (1995b). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth Perception of space and motion. (pp. 69-117). San Diego, CA, US: Academic Press.
    Deisinger, Cruz-Neira, Riedel, & Symanzik. (1997). The effect of different viewing devices for the sense of presence and immersion in virtual environments: A comparison of stereoprojections based on monitors, HMDs, and screen. Advances in Human Factors/Ergonomics, 21, 881-884.
    Dodgson, N. A. (2005). Autostereoscopic 3D displays. Computer, 38(8), 31-36. doi:10.1109/MC.2005.252
    Dużmańska, N., Strojny, P., & Strojny, A. (2018). Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Frontiers in psychology, 9(2132). doi:10.3389/fpsyg.2018.02132
    Fernandez, L., & Bootsma, R. J. (2004). Effects of biomechanical and task constraints on the organization of movement in precision aiming. Exp Brain Res, 159(4), 458-466. doi:10.1007/s00221-004-1964-4
    Fitts, P. M. (1992). The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement. Journal of Experimental Psychology: General, 121(3), 262-269.
    Gandevia, S. C., & Burke, D. (2011). Does the nervous system depend on kinesthetic information to control natural limb movements? Behavioral and Brain Sciences, 15(4), 614-632. doi:10.1017/S0140525X0007254X
    Geng, J. (2013). Three-dimensional display technologies. Advances in optics and photonics, 5(4), 456-535. doi:10.1364/AOP.5.000456
    Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., Thompson, W. B., & Mohler, B. J. (2015). Effect of Display Technology on Perceived Scale of Space. Human Factors, 57(7), 1235-1247. doi:10.1177/0018720815590300
    Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans. Appl. Percept., 7(4), 1-18. doi:10.1145/1823738.1823744
    Greeno, J. (1994). Gibson's Affordances. Psychological Review, 101, 336-342. doi:10.1037/0033-295X.101.2.336
    Henry, D., & Furness, T. (1993, 18-22 Sep 1993). Spatial perception in virtual environments: Evaluating an architectural application. Paper presented at the Proceedings of IEEE Virtual Reality Annual International Symposium.
    Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3), 33.31-3330. doi:10.1167/8.3.33
    Hu, B., Ma, L., Zhang, W., Salvendy, G., Chablat, D., & Bennis, F. (2011). Predicting real-world ergonomic measurements by simulation in a virtual environment. International Journal of Industrial Ergonomics, 41(1), 64-71. doi:https://doi.org/10.1016/j.ergon.2010.10.001
    Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces. Hum.-Comput. Interact., 1(4), 311-338. doi:10.1207/s15327051hci0104_2
    Iosa, M., Fusco, A., Morone, G., & Paolucci, S. (2012). Walking there: Environmental influence on walking-distance estimation. Behavioural Brain Research, 226(1), 124-132.
    ISO, I. (2000). DIS 9241-9: Ergonomic Requirements for Office Work with Visual Display Terminals, Non-Keyboard Input Device Requirements.: International Organization for Standardization.
    Jeong, S., Jung, E. S., & Im, Y. (2016). Ergonomic evaluation of interaction techniques and 3D menus for the practical design of 3D stereoscopic displays. International Journal of Industrial Ergonomics, 53, 205-218. doi:https://doi.org/10.1016/j.ergon.2016.01.001
    Jerald, J. (2016). The VR Book: Human-Centered Design for Virtual Reality: Association for Computing Machinery and Morgan; Claypool.
    Kelly, J. W., Cherep, L. A., & Siegel, Z. D. (2017). Perceived Space in the HTC Vive. ACM Transactions on Applied Perception, 15(1). doi:10.1145/3106155
    Kelly, J. W., Hammel, W., Sjolund, L. A., & Siegel, Z. D. (2015). Frontal extents in virtual environments are not immune to underperception. Attention, Perception, and Psychophysics, 77(6), 1848-1853. doi:10.3758/s13414-015-0948-8
    Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203-220. doi:10.1207/s15327108ijap0303_3
    Kim, H.-Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative dentistry & endodontics, 38(1), 52-54. doi:10.5395/rde.2013.38.1.52
    Kim, K., Rosenthal, M. Z., Zielinski, D., & Brady, R. (2012). Comparison of desktop, head mounted display, and six wall fully immersive systems using a stressful task. Paper presented at the Proceedings of the 2012 IEEE Virtual Reality.
    Klein, E., Swan, J. E., Schmidt, G. S., Livingston, M. A., & Staadt, O. G. (2009, 14-18 March 2009). Measurement Protocols for Medium-Field Distance Perception in Large-Screen Immersive Displays. Paper presented at the 2009 IEEE Virtual Reality Conference.
    Lambooij, M., Fortuin, M., Ijsselsteijn, W. A., & Heynderickx, I. (2009). Measuring visual discomfort associated with 3D displays. Paper presented at the IS&T/SPIE Electronic Imaging.
    Lappin, J. S., Shelton, A. L., & Rieser, J. J. (2006). Environmental context influences visually perceived distance. Perception & Psychophysics, 68(4), 571-581. doi:10.3758/bf03208759
    Levin, M. F., Knaut, L. A. M., Magdalon, E. C., & Subramanian, S. (2009) Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis. Vol. 145. Stud Health Technol Inform (pp. 94-108).
    Levin, M. F., Magdalon, E. C., Michaelsen, S. M., & Quevedo, A. A. F. (2008, 25-27 Aug. 2008). Comparison of reaching and grasping kinematics in patients with hemiparesis and in healthy controls in virtual and physical environments. Paper presented at the 2008 Virtual Rehabilitation.
    Li, B., Zhang, R., & Kuhl, S. (2014). Minication affects action-based distance judgments in oculus rift HMDs. Paper presented at the Proceedings of the ACM Symposium on Applied Perception, Vancouver, British Columbia, Canada.
    Lin, C., Abreham, B., Caesaron, D., & Woldegiorgis, B. (2020). Exocentric Distance Judgment and Accuracy of Head-Mounted and Stereoscopic Widescreen Displays in Frontal Planes. Applied Sciences, 10, 1427. doi:10.3390/app10041427
    Lin, C. J., Abreham, B. T., & Woldegiorgis, B. H. (2019). Effects of displays on a direct reaching task: A comparative study of head mounted display and stereoscopic widescreen display. International Journal of Industrial Ergonomics, 72, 372-379. doi:https://doi.org/10.1016/j.ergon.2019.06.013
    Lin, C. J., Caesaron, D., & Woldegiorgis, B. H. (2019). The Effects of Augmented Reality Interaction Techniques on Egocentric Distance Estimation Accuracy. Applied Sciences, 9(21), 4652.
    Lin, C. J., Chen, H. J., Cheng, P. Y., & Sun, T. L. (2015). Effects of Displays on Visually Controlled Task Performance in Three-Dimensional Virtual Reality Environment. Human Factors and Ergonomics in Manufacturing & Service Industries, 25(5), 523-533. doi:10.1002/hfm.20566
    Lin, C. J., & Woldegiorgis, B. H. (2015). Interaction and visual performance in stereoscopic displays: A review. Journal of the Society for Information Display, 23(7), 319-332. doi:10.1002/jsid.378
    Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64, 66-74.
    Lin, C. J., & Woldegiorgis, B. H. (2018). Kinematic analysis of direct pointing in projection-based stereoscopic environments. Human Movement Science, 57, 21-31. doi:https://doi.org/10.1016/j.humov.2017.11.002
    Lin, C. J., Woldegiorgis, B. H., & Caesaron, D. (2014). Distance estimation of near-field visual objects in stereoscopic displays. Journal of the Society for Information Display, 22(7), 370-379. doi:doi:10.1002/jsid.269
    Lin, C. J., Woldegiorgis, B. H., Caesaron, D., & Cheng, L.-Y. (2015). Distance estimation with mixed real and virtual targets in stereoscopic displays. Displays, 36, 41-48. doi:https://doi.org/10.1016/j.displa.2014.11.006
    Marathe, A. R., Carey, H. L., & Taylor, D. M. (2008). Virtual reality hardware and graphic display options for brain-machine interfaces. J Neurosci Methods, 167(1), 2-14. doi:10.1016/j.jneumeth.2007.09.025
    Martínez-Navarro, J., Bigné, E., Guixeres, J., Alcañiz Raya, M., & Torrecilla Moreno, C. (2019). The influence of virtual reality in e-commerce. Journal of Business Research, 100, 475-482. doi:10.1016/j.jbusres.2018.10.054
    Mazuryk, T., & Gervautz, M. (1999). Virtual Reality - History, Applications, Technology and Future.
    McGrath, J. L., Taekman, J. M., Dev, P., Danforth, D. R., Mohan, D., Kman, N., Crichlow, A., & Bond, W. F. (2018). Using Virtual Reality Simulation Environments to Assess Competence for Emergency Medicine Learners. Academic Emergency Medicine, 25(2), 186-195. doi:10.1111/acem.13308
    Messing, R., & Durgin, F. H. (2005). Distance Perception and the Visual Horizon in Head-Mounted Displays. ACM Trans. Appl. Percept., 2(3), 234-250. doi:10.1145/1077399.1077403
    Meyer, D. E., Abrams, R. A., Kornblum, S., & Wright, C. E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340-370.
    Milgram, P., & Kishino, F. (1994). Taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, E77-D(12), 1321-1329.
    Miller, M. R., Jun, H., Herrera, F., Yu Villa, J., Welch, G., & Bailenson, J. N. (2019). Social interaction in augmented reality. Plos One, 14(5), e0216290. doi:10.1371/journal.pone.0216290
    Mittelstaedt, J., Wacker, J., & Stelling, D. (2018). Effects of display type and motion control on cybersickness in a virtual bike simulator. Displays, 51, 43-50. doi:https://doi.org/10.1016/j.displa.2018.01.002
    Moss, J. D., Austin, J., Salley, J., Coats, J., Williams, K., & Muth, E. R. (2011). The effects of display delay on simulator sickness. Displays, 32(4), 159-168. doi:https://doi.org/10.1016/j.displa.2011.05.010
    Naceri, A., & Chellali, R. (2011). Depth perception within peripersonal space using head-mounted display. Presence: Teleoper. Virtual Environ., 20(3), 254-272. doi:10.1162/PRES_a_00048
    Naceri, A., Chellali, R., Dionnet, F., & Toma, S. (2009, 15-20 Nov. 2009). Depth Perception within Virtual Environments: A Comparative Study Between Wide Screen Stereoscopic Displays and Head Mounted Devices. Paper presented at the 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns.
    Naceri, A., Chellali, R., Dionnet, F., & Toma, S. (2010a). Depth Perception Within Virtual Environments: Comparison Between two Display Technologies. International Journal on Advances in Intelligent Systems, 2.
    Naceri, D., Chellali, R., Dionnet, F., & Toma, S. (2010b). Depth Perception Within Virtual Environments: Comparison Between two Display Technologies. International Journal on Advances in Intelligent Systems, 3, 51-64.
    Pangilinan, E., Lukas, S., & Mohan, V. (2019). Creating Augmented and Virtual Realities. 1005 Gravenstein Highway North, Sebastopol, CA 95472, United States of America: O’Reilly Media, Inc.
    Park, K. S., Hong, G. B., & Lee, S. (2012). Fatigue problems in remote pointing and the use of an upper-arm support. International Journal of Industrial Ergonomics, 42(3), 293-303. doi:https://doi.org/10.1016/j.ergon.2012.02.005
    Park, S. C., Park, C. M., & Wang, G.-N. (2008). A PLC programming environment based on a virtual plant. The International Journal of Advanced Manufacturing Technology, 39(11), 1262-1270. doi:10.1007/s00170-007-1306-3
    Pastoor, S., & Wöpking, M. (1997). 3-D displays: A review of current technologies. Displays, 17(2), 100-110. doi:https://doi.org/10.1016/S0141-9382(96)01040-2
    Plumert, J. M., Kearney, J. K., Cremer, J. F., & Recker, K. (2005). Distance perception in real and virtual environments. ACM Trans. Appl. Percept., 2(3), 216-233. doi:10.1145/1077399.1077402
    Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., Amicis, R. d., Pinto, E. B., Eisert, P., Döllner, J., & Vallarino, I. (2015). Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet. IEEE Computer Graphics and Applications, 35(2), 26-40. doi:10.1109/MCG.2015.45
    Posada, J., Zorrilla, M., Dominguez, A., Simoes, B., Eisert, P., Stricker, D., Rambach, J., Döllner, J., & Guevara, M. (2018). Graphics and Media Technologies for Operators in Industry 4.0. IEEE Computer Graphics and Applications, 38(5), 119-132. doi:10.1109/MCG.2018.053491736
    Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The Perception of Egocentric Distances in Virtual Environments - A Review. Acm Computing Surveys, 46(2). doi:10.1145/2543581.2543590
    Rolland, J. P., Biocca, F., Hamza-Lup, F., Ha, Y., & Martins, R. (2005). Development of head-mounted projection displays for distributed, collaborative, augmented reality applications. Presence: Teleoper. Virtual Environ., 14(5), 528-549. doi:10.1162/105474605774918741
    Rolland, J. P., Gibson, W., & Ariely, D. (1995). Towards quantifying depth and size perception in virtual environments. Presence: Teleoper. Virtual Environ., 4(1), 24-49. doi:10.1162/pres.1995.4.1.24
    Romero, D., Bernus, P., Noran, O., Stahre, J., & Fasth, F.-B. Å. (2016). The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems.
    Sachs, G. (2016). Virtual and augmented reality; understanding the race of the next computing platform. Retrieved from New York, US:
    Santos, Paulo Dias, Angela Pimentel, Jan-Willem Baggerman, Carlos Ferreira, Samuel Silva, & Joaquim Madeira. (2008). Head-mounted display versus desktop for 3D navigation in virtual reality: a user study. Multimedia Tools and Applications, 41(1), 161. doi:10.1007/s11042-008-0223-2
    Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis, 4th ed. Champaign, IL, US: Human Kinetics.
    Schmidt, R. A., Sherwood, D. E., Zelaznik, H. N., & Leikind, B. (1985). Speed-accuracy trade-offs in motor behavior: Theories of impulse variability. : Springer, Berlin, Heidelberg.
    Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T., Jr. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev, 47(5), 415-451.
    Segura, Á., Diez, H. V., Barandiaran, I., Arbelaiz, A., Álvarez, H., Simões, B., Posada, J., García-Alonso, A., & Ugarte, R. (2020). Visual computing technologies to support the Operator 4.0. Computers & Industrial Engineering, 139, 105550. doi:https://doi.org/10.1016/j.cie.2018.11.060
    Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58-69.
    Sheldon, A. (2020). Future of AR and VR in Healthcare, Education, and eCommerce in 2020. Retrieved from https://hackernoon.com/how-ar-and-vr-technologies-transforming-enterprises-43f44784353e
    Sinai, M. J., Krebs, W. K., Darken, R., Rowland, J. H., & McCarley, J. S. (1999). Egocentric Distance Perception in a Virutal Environment Using a Perceptual Matching Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 43, 1256-1260. doi:10.1177/154193129904302219
    Singh, N., & Singh, S. (2017, 23-24 Feb. 2017). Virtual reality: A brief survey. Paper presented at the 2017 International Conference on Information Communication and Embedded Systems (ICICES).
    Somrak, A., Humar, I., Hossain, M. S., Alhamid, M. F., Hossain, M. A., & Guna, J. (2019). Estimating VR Sickness and user experience using different HMD technologies: An evaluation study. Future Generation Computer Systems, 94, 302-316. doi:https://doi.org/10.1016/j.future.2018.11.041
    Soukoreff, R. W., & MacKenzie, I. S. (2004). Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts' law research in HCI. Int. J. Hum.-Comput. Stud., 61(6), 751-789. doi:10.1016/j.ijhcs.2004.09.001
    Sperling, G. (1971). Stereoscopic visual displays: Principles, viewing devices, alignment procedures. Behavior Research Methods & Instrumentation, 3(3), 154-158. doi:10.3758/bf03209941
    Stefanucci, J. K., Creem-Regehr, S. H., Thompson, W. B., Lessard, D. A., & Geuss, M. N. (2015). Evaluating the accuracy of size perception on screen-based displays: Displayed objects appear smaller than real objects. Journal of Experimental Psychology: Applied, 21(3), 215-223. doi:10.1037/xap0000051
    Steinicke, F., Bruder, G., Hinrichs, K., Lappe, M., Ries, B., & Interrante, V. (2009). Transitional environments enhance distance perception in immersive virtual reality systems. Paper presented at the Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania, Crete, Greece.
    Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It's what you weigh, not what you think. Acta Psychol (Amst), 165, 1-8. doi:10.1016/j.actpsy.2016.01.012
    Swan, J. E., Singh, G., & Ellis, S. R. (2015). Matching and Reaching Depth Judgments with Real and Augmented Reality Targets. IEEE Transactions on Visualization and Computer Graphics, 21(11), 1289-1298. doi:10.1109/TVCG.2015.2459895
    Tan, D. S., Gergle, D., Scupelli, P. G., & Pausch, R. (2004). Physically large displays improve path integration in 3D virtual navigation tasks. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vienna, Austria.
    Thompson, S. G., McConnell, D. S., Slocum, J. S., & Bohan, M. (2007). Kinematic analysis of multiple constraints on a pointing task. Human Movement Science, 26(1), 11-26. doi:https://doi.org/10.1016/j.humov.2006.09.001
    Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the Quality of the Computer Graphics Matter when Judging Distances in Visually Immersive Environments? Presence, 13(5), 560-571. doi:10.1162/1054746042545292
    Urvoy, M., Barkowsky, M., & Le Callet, P. (2013). How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. Annals of Telecommunications-Annales Des Telecommunications, 68(11-12), 641-655. doi:10.1007/s12243-013-0394-3
    Wang, H., Jiang, S., & Wu, J. (2018, 10-12 Dec. 2018). A Virtual Reality Based Simulator for Training Surgical Skills in Procedure of Catheter Ablation. Paper presented at the 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR).
    Wartenberg, C., & Wiborg, P. (2003). Precision of Exocentric Distance Judgments in Desktop and Cube Presentation. Presence, 12(2), 196-206. doi:10.1162/105474603321640941
    Wei, N. J., Dougherty, B., Myers, A., & Badawy, S. M. (2018). Using Google Glass in Surgical Settings: Systematic Review. JMIR mHealth and uHealth, 6(3), e54-e54. doi:10.2196/mhealth.9409
    Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2009). The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Trans. Appl. Percept., 6(2), 1-14. doi:10.1145/1498700.1498702
    Witt, J. K., Linkenauger, S. A., & Wickens, C. (2016). Action-specific effects in perception and their potential applications. Journal of Applied Research in Memory and Cognition, 5(1), 69-76. doi:https://doi.org/10.1016/j.jarmac.2015.07.008
    Witt, J. K., Stefanucci, J. K., Riener, C. R., & Proffitt, D. R. (2007). Seeing beyond the target: environmental context affects distance perception. Perception, 36(12), 1752-1768. doi:10.1068/p5617
    Woldegiorgis, B. H., & Lin, C. J. (2017). The accuracy of distance perception in the frontal plane of projection-based stereoscopic environments. Journal of the Society for Information Display, 25(12), 701-711. doi:doi:10.1002/jsid.618
    Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996-1003. doi:https://doi.org/10.1016/j.conb.2012.05.003
    Woodworth, R. S. (1899). The accuracy of voluntary movement. New York.
    Yang, L., Dong, H., Alelaiwi, A., & Saddik, A. E. (2016). See in 3D: state of the art of 3D display technologies. Multimedia Tools and Applications, 75(24), 17121-17155. doi:10.1007/s11042-015-2981-y
    Ziemer, C. J., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2009). Estimating distance in real and virtual environments: Does order make a difference? Atten Percept Psychophys, 71(5), 1095-1106. doi:10.3758/APP.71.5.1096

    無法下載圖示 全文公開日期 2025/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE