簡易檢索 / 詳目顯示

研究生: 楊智安
Chih-An Yang
論文名稱: 電泳沉積複合式游離磨料線鋸應用於單晶矽晶圓加工之研究
Study on Electrophoresis Deposition with Hybrid Slurry Wire Sawing Process of Single Crystalline Silicon Wafers
指導教授: 陳炤彰
Chao-Chang A.Chen
口試委員: 陳炤彰
陳士勛
趙崇禮
陳順同
蔡曜陽
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 153
中文關鍵詞: 游離磨料加工電泳沉積製程半導體矽晶圓表面粗糙度固相化學
外文關鍵詞: Free abrasive processing, Electrophoretic deposition process, Semiconductor Silicon Wafer, Surface roughness, Solid phase chemistry
相關次數: 點閱:251下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽晶圓為製造半導體元件的關鍵基礎材料與太陽能製造用的矽基板不同的是,半導體用之矽晶圓經過線切割後,還需要經過蝕刻、拋光之加工,如何有效提供加工效率以及減少後續拋光製程之加工為本研究主要目的。本研究將傳統式游離磨料進行一改良,在原本的比例中添加了反應式磨料,稱為複合式游離磨料製程,以固相化學方式進行加工,碳酸鈣與矽反應物為矽酸鈣,並且在研究中使用拉曼以及EDS確認矽酸鈣之存在,利用電泳沉積製程,提升複合式游離磨料之加工效能,本研究先以實驗用之小機台EPD-WS單線測試機,進行各製程之加工於水刀切割後之晶碇,將切割後之結果進行表面品質分析後,實際應用於商業用機台DWS-150進行切片之結果比較。由實驗結果可得,在表面粗糙度方面,添加碳酸鈣之製程可有效將其表面粗糙度以及次表層損傷深度得到改善,次表層裂縫深度降,低對於線鋸之後相關製程得到一效率上的提升,可供日後游離磨料加工製程之發展。


    Silicon wafers are the key materials for fabricating semiconductor components. This study is to improve efficiency of slurry wire sawing (SWS) process by adding reactive abrasives into the slurry. The conventional free abrasive of SWS has been compared with the Reactive SWS using the composite slurry with calcium carbonate abrasives that can induce solid-state chemical reaction (SSCR) with silicon. The reactants has been found as calcium silicate by Raman and EDS inspection. Moreover, an electrophoretic deposition process has been developed to enhance the Reactive SWS process. Use the EPD-WS to slice the substrates and measurement its surface quality. Also some 3" Silicon ingots have been sliced by revised DWS-150 machine with EPD function. From experimental results, adding calcium carbonate can significantly improve materials removal rate (MRR), the surface roughness and also reduce sub-surface crack length. Future study can apply this developed process on high-volume multi-wire sawing of semiconductor Silicon wafers.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VIII 符號表 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 線鋸製程介紹 3 1.3 研究目的 6 1.4 論文架構 7 第二章 文獻回顧 8 2.1 線鋸切割製程相關文獻 8 2.2 電泳沉積相關文獻文獻 12 2.2.1電泳現象(Electrophoresis phenomenon) 13 2.2.2 電泳沉積方式(Electrophoresis phenomenon) 13 2.3 固相化學反應相關文獻 19 2.4 文獻回顧總結 22 第三章 電泳沉積應用線鋸製程介紹 28 3.1 電泳之碳化矽與碳酸鈣沉積方式 28 3.2 矽與碳酸鈣間固相化學反應 30 3.3 線鋸加工製程介紹 31 3.3.1游離磨料線鋸加工製程 31 3.3.2複合式游離磨料線鋸加工製程介紹 31 3.3.3電泳沉積複合式游離磨料加工製程 32 3.3.4複線式游離磨料與複合式游離磨料材料移除率 33 3.3.5電泳沉積複線複合式游離磨料材料移除率 37 第四章 實驗設備與規劃 40 4.1 實驗規劃 40 4.2 實驗耗材 43 4.2.1單晶矽晶碇 43 4.2.2碳化矽磨料 43 4.2.3碳酸鈣磨料 45 4.2.4載液(丙二醇,Propylene Glycol,PG) 46 4.2.5切割鋼線 47 4.2.6單晶矽晶棒 48 4.2.7漿料測試 49 4.2.8懸浮液 53 4.2.9Zeta potential量測 55 4.2.10電泳沉積漿料沉降測試 56 4.3 實驗設備 58 4.3.1 掃描式電子顯微鏡 58 4.3.2 綠光干涉儀 59 4.3.3 雙束型發射聚焦離子束顯微鏡(FIB) 60 4.3.4雷射介面電位分析儀暨粒徑分析儀 61 4.4 20x20x10mm單晶矽晶錠加工實驗 62 4.4.1 電泳沉積實驗 64 4.4.2 拉曼元素分析 67 4.4.3 EDS元素分析 68 4.4.4 切口損失(Kerf Loss) 70 4.4.5 表面粗糙度(Surface Roughness) 74 4.4.6 20x20x10mm單晶矽晶碇次表面破壞 80 第五章 複線式電泳沉積線鋸加工實驗結果 83 5.1 複線式電泳線鋸加工機台 84 5.2 製程參數與實驗規劃 86 5.3 矽晶圓材料移除率 90 5.3.1矽晶圓材料移除率估算 90 5.3.2實際材料移除率估算 93 5.4 矽晶圓表面粗糙度 94 5.5 矽晶圓次表面破壞 102 5.6 矽晶圓厚度變異量 107 5.7 線材耗損 112 5.8 綜合討論 113 第六章 結論與建議 114 6.1 結論 114 6.2 建議 115 參考文獻 116 附錄A 120 附錄B 124 附錄C 126 作者簡介 133

    [1] F.Yang, I.Kao. "Free Abrasive Machining in Slicing Brittle Materials with Wire Saw",Transaction of the ASME,Vol.123,pp.254-259,2001.
    [2] D.Kray, M.Schumann, "Solar Wafer Slicing with Loose and Fixed grains",IEEE,PP.948-957,2006.
    [3] K.I.Ishikawa, H.suwabe, S.I.Itoh, "Study on slurry actions in slicing groove and slicing characteristics at multi-wire saw",Conference of Tawian Society for Abrasive Technology,2006.
    [4] 梁俊碩,"線鋸切割太陽能基板之研究",國立台灣科技大學,機械工程研究所碩士論文,2008。
    [5] 郭炳麟,"漿料特性分析於矽晶片線鋸切割影響研究",國立台灣科技大學,機械工程研究所碩士論文,2009年。
    [6] C.-C. A. Chen and P. H. Chao, "Surface Texture Analysis of Fixed and Free Abrasive Machining of Silicon Substrates for Solar Cells", Advanced Materials Research, vol. 126-128, pp. 177-180, 2010.
    [7] 趙培勛,"導輪磨耗於線鋸切割影響研究" ,國立台灣科技大學,機械工程研究所碩士論文,2010年。
    [8] 鄭守智,"快速熱退火於矽晶錠線鋸加工之製程影響研究" ,國立台灣科技大學,機械工程研究所碩士論文,2012年。
    [9] 林鼎將,"矽基板線鋸加工之表面形貌分析研究" ,國立台灣科技大學,機械工程研究所碩士論文,2012年。
    [10] Ferrari, B. "The conductivity of aqueous Al2O3 slips for electrophoretic deposition. " Materials Letters, pp.353-355., 1996
    [11] Ordung, M.; LEHMANN, J.; ZIEGLER, G. "Fabrication of fibre reinforced green bodies by electrophoretic deposition of silicon powder from aqueous suspensions". Journal of materials science, pp. 889-894, 2004.
    [12] Tsui, Hai-Ping. "A study on stainless steel mirror surface polishing by using the electrophoretic deposition method." International Journal of Machine Tools and Manufacture, 2007.
    [13] I. Sondi, J. Bišćan, N. Vdović, and S. D. Škapin, "The electrokinetic properties of carbonates in aqueous media revisited", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 342, pp. 84-91, 2009.
    [14] 黃堯弘, "電泳沉積輔助線鋸切割於矽基板加工之永續性分析之研究" ,國立台灣科技大學,機械工程研究所碩士論文,2012。
    [15] 陳冠霖, "電泳反應式鑽石線鋸製程應用於太陽能矽基板加工之研究",國立台灣科技大學,機械工程研究所碩士論文,2015。
    [16] Xiang, Qing, and Daixiong Zhang. "Fabrication of molybdenum trioxide (MoO3) coating by electrophoretic deposition." Journal of Materials Science: Materials in Electronics , pp .7449-7453 ,2017.
    [17] H. Vora, "Mechano-chemical Polishing of Silicon Nitride, Communications of the American Ceramic Society", Communcations of the American Ceramic Society, p. 140~141, 1982.
    [18] Y. T. Masao Kikuchi, Tadatomo Suga, "Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium Oxide Abrasive", Ceramic Society, p. 189~194, 1992.
    [19] J. Kuhnle, "Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as Oxidizing Agents", Surface science 340, p.6~22, 1995.
    [20] Kitakaname, " Mechanochemical Polishing by Soft Abrasives ", 2001.
    [21] C.-C.A. Chen,L.-S. Shu, and S.-R.Lee, "Mechano-chemical polishing of silicon wafers, " Journal of Materials Processing Technology, vol. 140, pp. 373-378, 2003.
    [22] KAMIYA, Sumio, et al. "Study on reaction mechanism of Si and pure CeO2 for chemical-mechanical-grinding process." Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing and Measurment Phenomena, pp.1496-1502,2009.
    [23] DONG, Zhigang, et al. "Surface integrity and removal mechanism of chemical mechanical grinding of silicon wafers using a newly developed wheel." The International Journal of Advanced Manufacturing Technology, pp.1231-1239, 2016.
    [24]GAO, Shang, et al. "Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel." Materials Science in Semiconductor Processing, pp.97-106,2017, 63: 97-106.

    QR CODE