簡易檢索 / 詳目顯示

研究生: Assefa Asmare Tsegaw
Assefa - Asmare Tsegaw
論文名稱: Research on Development of Self-Propelled and Spindle Assisted Rotary Multi-Jet Abrasive Fluid Polishing Tools forUltra-Precision Polishing
Research on Development of Self-Propelled and Spindle Assisted Rotary Multi-Jet Abrasive Fluid Polishing Tools forUltra-Precision Polishing
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 范光照
Kuang-Chao Fan
許巍耀
Wei-Yao Hsu
林清安 
Ching-An Lin
巴白山
Pai-Shan Pa
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 217
中文關鍵詞: 磨料射流拋光(Abrasive jet polishing)多噴射流(Multi-jet);特斯拉渦輪機 (Tesla turbine)光學玻璃(Optical glass)微晶玻璃(Zerodur)模具鋼(商標:STAVAX)自由的形態(3D surface)田口方法(Taguchi’s method)變異數分析(ANOVA)表面粗糙度(Surface roughness)
外文關鍵詞: Multi-jet, Tesla turbine, Zerodur, 3D surface
相關次數: 點閱:306下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光學玻璃的需求增加,對於特定的形狀,形式,表面紋理和大小(微型化) 的精密度要求也有所增加。適用於測量設備所使用的參考反射鏡的標準和表面精製度就顯得至關重要。因此,在製造工業上,表面精加工是不可缺少的。在這項研究中,提出了一種新型的自轉式多噴射磨料流體拋光技術; 在其中,一個無葉片式的特斯拉(Tesla)渦輪機被用作超精拋光過程的原動機。渦輪機的特點是在出口處的高旋轉速度; 因此,遠離渦輪機產生的高強度的動能的被用作拋光的動能。計算流體動力學(CFD)也被用來模擬磨料流在渦輪機葉片上的流動。藉由一個全新設計製造的拋光工具,針對改善冠狀光學玻璃(N-BK7)的表面粗糙度改善,探討最佳拋光參數。田口(Taguchi) 實驗方法,藉由一個L18正交陣列,被用來求得最佳的製程參數。變異數分析(ANOVA)也被運用來決定顯著因子。表面粗糙度(Ra)提升了約94.44%,由0.36μm至0.02微米。同時,本研究也對改善表面粗糙度的影響相關顯著因子進行深入討論。
    此外,隨著現代科技的進步,高精密的表面處理技術用於光學玻璃也受到極大關注和開發,以滿足有效率工業處理流程的要求。不僅所使用的工具,過程參數對表面粗糙度的改善也有很大影響。在這項研究中,利用創新的旋轉磨料流體多噴射流拋光流程來改善微晶玻璃的光學玻璃的表面粗糙度的研究過程也同時呈現。出於同樣的目的,用於執行超精密拋光工具也被設計和製造。藉由田口實驗方法L18正交陣列,可求得最佳的加工參數,本研究也完成變異數分析以決定顯著因子。根據實驗結果發現,表面粗糙度(Ra)的提升已達成了大約了98.33%,由0.360微米至為0.006微米。本實驗結果表明,表面處理技術的實現能夠滿足光學性能面(粗糙度Ra <12毫微米)的要求。此外,顯著因子對表面粗糙度的改進的影響也在本研究中詳細討論。
    拋光工具的進一步應用在無光學玻璃表面粗糙度的改善和消除單點金剛石車削(SPDT)刀痕,本研究也進行測試。藉由增加進給速率以產生最佳化的自轉式FJP參數,N-BK7球面光學玻璃的表面粗糙度(Ra)改善了約47.73%從0.398微米至0.208微米。此外,利用主軸輔助型多噴射流磨料流體微拋光工具,約48.74%的球形N-BK7光學玻璃的表面粗糙度(Ra)可獲得改善,從0.398μm至0.204μm。同時,主軸輔助型拋光製程,可以顯著地移除鍍鎳STAVAX模具鋼上的單晶鑽石刀具之加工痕跡。


    As the demand for optical glasses has increased, precision requirements for specific shapes, forms, surface textures, and sizes (miniaturization) have also increased. The standards and surface finishes applied to the reference mirrors used in measuring appliances are crucial. Hence, enhancements in figuring and surface finishing are indispensable to manufacturing industries. In this study, proposes a novel self-propelled rotary multi-jet abrasive fluid polishing technique for an ultra-precision polishing process in which a bladeless Tesla turbine used as a rotary actuator. The turbine characterized by high swirling velocity at the outlet; therefore, high levels of kinetic energy moving away from the turbine were used as polishing energy. Computational fluid dynamics (CFD) was also used to simulate the flow on the turbine blades. With a newly designed and manufactured polishing tool, the optimal polishing parameters for improving the surface roughness of a crown optical glass (N-BK7) were investigated. Taguchi’s experimental approach, an L18 orthogonal array, was employed to obtain the optimal process parameters. An analysis of variance (ANOVA) was also conducted to determine the significant factors. The surface roughness has been improved by approximately 94.44% from (Ra) 0.36 μm to (Ra) 0.02 μm. This study also presents a discussion on the influence of significant factors on improving surface roughness.
    Moreover, with the advance of contemporary technology, high precision surface finishing techniques for optical glasses are of great concern and developing to meet the requirements of the effective industrialized processes. Not only the used tools, but also process parameters have great influence on the surface roughness improvements. In this study, surface roughness improvement of Zerodur optical glass using an innovative rotary abrasive fluid multi-jet polishing process has been presented. For the same purpose, a tool for executing ultra-precision polishing was designed and manufactured. Taguchi’s experimental approach, an L18 orthogonal array was employed to obtain the optimal process parameters. ANOVA analysis has also been carried out to determine the significant factors. It was observed that about a 98.33% improvement on surface roughness from (Ra) 0.360 μm to (Ra) 0.006 μm has been achieved. The experimental results show that the polished surface can satisfy the requirements for optical-quality surface (Ra<12nm). In addition, the influence of significant factors on surface roughness improvement has been discussed in this study.
    Further application of this developed polishing tool has been tested on 3D surface optical glasses on surface roughness improvement and removal of single point diamond turned (SPDT) marks. The surface roughness improvement on N-BK7 3D surface optical glass was about 47.73 % from (Ra) 0.398μm to (Ra) 0.208μmusing optimal self-propelled FJP parameters with feed rate enhancement. In addition to this, using spindle assisted mult-jet abrasive fluid polishing tool, about 48.74% of surface roughness improvement on 3D surface N-BK7 optical glass was achieved from (Ra) 0.398 μm to (Ra) 0.204 μm. Meanwhile, spindle assisted polishing process can significantly remove the SPDT marks considerably on Nickel plated STAVAX mold steel.

    ABSTRACTi ACKNOWLEDGEMENTSv TABLE OF CONTENTSvii LIST OF FIGURESxi LIST OF TABLESxv CHAPTER 11 INTRODUCTION1 1.1 Scope and goal of the research5 1.2 Research methodology5 1.3 History of glass discovery, production and shaping7 1.4 Outline of the thesis8 CHAPTER 210 LITERATURE REVIEW10 2.1 State of the art of optics production10 2.2 Properties and machining ability of optical glass12 2.2.1 Optical properties of glass13 2.2.2 Some important properties of glass14 2.2.3 Machining ability of optical glass16 2.3 Methods used in attempting to surface finishing improvements17 2.4 Abrasive fluid jet polishing process20 CHAPTER 322 BASIC PRINCIPLE22 3.1 Grinding23 3.2 Lapping25 3.3 Honing26 3.4 Achievable machining accuracy28 3.5 Production of optical glasses31 3.6 Classifications of glass polishing36 3.7 Abrasive fluid jet polishing process46 3.7.1 Polishing mechanisms48 3.7.2 Fluid jet polishing process parameters52 3.8 Design of experiments57 3.8.1 Taguchi method58 CHAPTER 470 DEVELOPMENT OF AN INNOVATIVE ULTRA-PRECISION ROTARY MULTI-JET ABRASIVE FLUID POLISHING SYSTEM70 4.0 Introduction70 4.1 Self-propelled rotary multi-jet abrasive fluid polishing tool71 4.1.1 Introduction71 4.1.2 Tesla turbine72 4.1.3 Description of the Tesla turbine73 4.1.4 Innovative polishing tool design80 4.1.5 Working principle82 4.1.6 Conceptual design of polishing head83 4.1.7 Simulation of Tesla turbine84 4.2 Spindle assisted rotary multi-jet abrasive fluid polishing tool92 4.2.1 Polishing head and nozzle design93 CHAPTER 595 EXPERIMENTAL WORK95 5.1 Experimental configuration of self-propelled rotary multi-jet abrasive FJP97 5.2 Experimental configuration of spindle assisted rotary multi-jet abrasive FJP101 5.2.1 Material of the specimen102 5.3 Commonly used accessories in these experimental setups104 5.3.1 Tank and stirring motor and cooling device104 5.3.2 Pump105 5.3.3 Container106 5.3.4 Machining center107 5.3.5 Color 3D laser confocal microscope108 5.4 Design of experiments110 5.4.1 Configuration of Taguchi’s orthogonal array110 CHAPTER 6118 EXPERIMENTAL RESULTS AND DISCUSSIONS118 6.0 Measuring and analyzing of surface roughness118 6.1 Experimental results of self-propelled rotary multi-jet abrasive FJP121 6.1.1 Optimal combination of each factor level121 6.1.2 Confirmation experiments124 6.1.3 Analysis of variance (ANOVA)127 6.1.4 Influences of significant factors on polished surface roughness128 6.2 Spindle assisted rotary multi-jet abrasive FJP experimental results132 6.2.1 Spindle assisted rotary multi-jet abrasive FJP experimental results of Zerodur optical glass polishing132 CHAPTER 7144 APPLICATION OF MULTI-JET ABRASIVE FJP ON 3D SURFACE144 N-BK7 OPTICAL GLASS AND NICKEL PLATED STAVAX144 7.1 Surface roughness improvement on 3D surface N-BK7 optical glass using self-propelled rotary multi-jet abrasive FJP process144 7.2 Surface roughness improvement on 3D surface N-BK7 optical glass using spindle assisted rotary multi-jet abrasive FJP process146 7.3 Removal of SPDT marks on surface of 3D surface Nickel plated STAVAX mold steel using spindle assisted rotary multi-jet abrasive FJP process149 7.3.1 Introduction149 7.3.2 STAVAX150 7.3.3 Removing of diamond turn marks on Nickel plated STAVAX mold steel152 CHAPTER 8157 CONCLUSIONS AND FUTURE WORK157 8.1 Conclusions157 8.2 Future work158 APPENDIX A160 ROUGHNESS DEFINITIONS160 APPENDIX B166 PROPERTIES OF ABRASIVES166 APPENDIX C170 STAINLESS STEEL ALLOY, COMPOSITION AND ITS TYPICAL APPLICATIONS170 APPENDIX D172 COMPONENTS OF POLISHING TOOLS172 PUBLICATIONS177 CURRICULUM VITAE179 REFERENCES181

    [1] S.M. Booij, Fluid jet polishing- possibilities and limitations of a new fabrication techinque, in: Applied Sciences, Technical University of Delft, Netherlands, 2003.
    [2] I. Asimov, J.A. Shulman, Isaac Asimov’s Book of Science and Nature Quotations, Weidenfeld & Nicolson, New York, 1998.
    [3] L.T. Ho, C.F. Cheung, S. To, An experimental investigation of surface generation using an integrated ultra-precision polishing process and different polishing trajectories, P I Mech Eng B-J Eng, 226 (2012) 203-220.
    [4] S.I. Newton, Optiks: Trerise of the reflections, refractions, inflections and colors of light, 4th ed., West End of St. Paul’s, London 1730.
    [5] W. Liao, Y. Dai, X. Xie, L. Zhou, Microscopic morphology evolution during ion beam smoothing of Zerodur surfaces, Opt Express, 22 (2014) 377-386.
    [6] T. Westerhoff, R. Jedamzik, P. Hartmann, Zero expansion glass ceramic ZERODUR (R) roadmap for advanced lithography, Optical Microlithography Xxvi, 8683 (2013).
    [7] W. Peng, C. Guan, S. Li, Material removal mode affected by the particle size in fluid jet polishing, Applied optics, 52 (2013) 7927-7933.
    [8] K. Fujiwara, S.A. Pahlovy, I. Miyamoto, Ar+ ion beam machining of the carbon thin layer deposited on the Zerodur (R) substrate for EUVL projection optics, Microelectron Eng, 88 (2011) 2527-2529.
    [9] R.L. Rhorer, C.J. Evans, Fabrication of optics by diamond turning, in, McGraw-Hill, New York, 1995.
    [10] F. Fang, X. Liu, L. Lee, Micro-machining of optical glasses—A review of diamond-cutting glasses, Sadhana, 28 (2003) 945-955.
    [11] P.L. Rubin, Chapter 2.3.3 - Light Scattering from Glasses and Viscous Liquids, in: P. Roy, S. Pierre (Eds.) Scattering, Academic Press, London, 2002, pp. 815-827.
    [12] C.A. Palmer, E.G. Loewen, R. Thermo, Diffraction grating handbook, Newport Corporation Springfield, OH, 2005.
    [13] O.F. Farsakoglu, D.M. Zengin, H. Kocabas, Grinding process for beveling and lapping operations in lens manufacturing, Applied Optics, 39 (2000) 1541-1548.
    [14] E. Brinksmeier, Y. Mutlugunes, F. Klocke, J.C. Aurich, P. Shore, H. Ohmori, Ultra-precision grinding, CIRP Annals - Manufacturing Technology, 59 (2010) 652-671.
    [15] R.K. Banyal, B. Ravindra, S. Chatterjee, Opto-thermal analysis of a lightweighted mirror for solar telescope, Opt Express, 21 (2013) 7065-7081.
    [16] J.C. Lambropoulos, T. Fang, P.D. Funkenbusch, S.D. Jacobs, M.J. Cumbo, D. Golini, Surface microroughness of optical glasses under deterministic microgrinding, Appl. Opt., 35 (1996) 4448-4462.
    [17] H.M. Pollicove, E.M. Fess, J.M. Schoen, Deterministic manufacturing processes for precision optical surfaces, (2003) 90-96.
    [18] E. Hugot, M. Ferrari, K. El Hadi, P. Vola, J.L. Gimenez, G.R. Lemaitre, P. Rabou, K. Dohlen, P. Puget, J.L. Beuzit, N. Hubin, Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system, Applied Optics, 48 (2009) 2932-2941.
    [19] O.W. Fahnle, H. Brug, H.J. Frankena, Fluid jet polishing of optical surfaces, Appl Opt, 37 (1998) 6771-6773.
    [20] A.R. Jones, J.B. Hull, Ultrasonic flow polishing, Ultrasonics, 36 (1998) 97-101.
    [21] F. Vega, N.r. Lupo’n, J.s.A. Cebrian, F. Laguarta, Laser application for optical glass polishing, Optical Engineering, 37 (1998) 272-279.
    [22] A.C. Wang, B.H. Yan, X.T. Li, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, International Journal of Machine Tools and Manufacture, 42 (2002) 915-923.
    [23] S.N. Maindarkar, P. Bongers, M.A. Henson, Predicting the effects of surfactant coverage on drop size distributions of homogenized emulsions, Chemical Engineering Science, 89 (2013) 102-114.
    [24] Y.I. Rabinovich, I.U. Vakarelski, S.C. Brown, P.K. Singh, B.M. Moudgil, Mechanical and thermodynamic properties of surfactant aggregates at the solid–liquid interface, Journal of Colloid and Interface Science, 270 (2004) 29-36.
    [25] S.M. Booij, O.W. Faehnle, M. Meeder, T. Wons, J.J.M. Braat, Jules Verne: a new polishing technique related to FJP, (2004) 89-100.
    [26] Z. Li, S. Li, Y. Dai, X. Peng, Optimization and application of influence function in abrasive jet polishing, Appl Opt, 49 (2010) 2947-2953.
    [27] O. Horiuchi, J. Ikeno, H. Shibutani, H. Suzuki, Y. Mizukami, Nano-abrasion machining of brittle materials and its application to corrective figuring, Precision Engineering, 31 (2007) 47-54.
    [28] H. Fang, P. Guo, J. Yu, Optimization of the material removal in fluid jet polishing, Optical Engineering, 45 (2006) 053401-053401.
    [29] H.K. Pulker, Chapter 1 - Introduction and History, in: Coatings on Glass (Second Edition), Elsevier, Amsterdam, 1999, pp. 1-6.
    [30] S.C. Rasmussen, How Glass Changed the World, Springer London, 2012.
    [31] P. Hartmann, H.F. Morian, R. Jedamzik, Optical glasses and glass ceramics for large lenses and prisms, (2002) 6-20.
    [32] C. Cremer, B.R. Masters, Resolution enhancement techniques in microscopy, Eur Phys J H, 38 (2013) 281-344.
    [33] M.W. Davidson, Ernst Abbe Microscopy, Labmedicine, 40 (2009) 502-503.
    [34] P. Seifert, Ernst Abbe, the founder of modern optics, Klin Monatsbl Augenh, 221 (2004) 521-522.
    [35] J.M. Parker, Glasses, in: B. Editors-in-Chief: Franco, L.L. Gerald, W. Peter (Eds.) Encyclopedia of Condensed Matter Physics, Elsevier, Oxford, 2005, pp. 273-280.
    [36] J.E. Shelby, OPTICAL MATERIALS | Optical Glasses, in: B.D.G. Editor-in-Chief: (Ed.) Encyclopedia of Modern Optics, Elsevier, Oxford, 2005, pp. 474-480.
    [37] T. Komatsu, T. Honma, Optical Active Nano-Glass-Ceramics, Int J Appl Glass Sci, 4 (2013) 125-135.
    [38] M.J. Davis, I. Mitra, Crystallization measurements using DTA methods: Applications to Zerodur, J Am Ceram Soc, 86 (2003) 1540-1546.
    [39] G.P.H. Gubbels, B.W.H. Venrooy, R. Henselmans, Accuracy of freeform manufacturing processes, (2009) 742607-742607.
    [40] G. Savio, R. Meneghello, G. Concheri, A surface roughness predictive model in deterministic polishing of ground glass moulds, Int J Mach Tool Manu, 49 (2009) 1-7.
    [41] K. Schwertz, An Introduction to the Optics Manufacturing Process, (2008).
    [42] M. Weck, M. Winterschladen, T. Pfeifer, D. Doerner, E. Brinksmeier, L. Autschbach, O. Riemer, Manufacturing of optical molds using an integrated simulation and measurement interface, (2004) 80-91.
    [43] K.L. Yiu, H.Y. Tam, An alternate approach to free-form surface fabrication, Journal of Materials Processing Technology, 192 (2007) 465-469.
    [44] K.F. Beckstette, Ultraprecise surface figuring for lithography optics, Tech Mess, 69 (2002) 526-534.
    [45] V.I. Konov, Laser in micro and nanoprocessing of diamond materials, Laser Photonics Rev, 6 (2012) 739-766.
    [46] L.I. Berezhinsky, V.P. Maslov, B.K. Serdega, V.V. Tetyorkin, V.A. Yukhymchuk, Study of chemical interaction at Al-ZERODUR interface, J Eur Ceram Soc, 26 (2006) 3825-3830.
    [47] H.P. Chen, H.Z. Tao, Q.D. Wu, X.J. Zhao, Crystallization Kinetics of Superionic Conductive Al(B, La)- Incorporated LiTi2(PO4)(3) Glass-Ceramics, J Am Ceram Soc, 96 (2013) 801-805.
    [48] P. Hartmann, ZERODUR (R): deterministic approach for strength design, Optical Engineering, 51 (2012).
    [49] W. Pannhorst, Zerodur• a low thermal expansion glass ceramic for optical precision applications, in: Low Thermal Expansion Glass Ceramics, 2005.
    [50] L.R. Pinckney, Glass-Ceramics, in: A.M. Editor-in-Chief: Robert (Ed.) Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, New York, 2003, pp. 807-816.
    [51] R.D. Rawlings, J. Wu, A. Boccaccini, Glass-ceramics: Their production from wastes—A review, Journal of Materials Science, 41 (2006) 733-761.
    [52] G.P. Smith, Some recent advances in glasses and glass-ceramics, Materials & Design, 10 (1989) 54-63.
    [53] J. van Elp, P.T.M. Giesen, J.J. van der Velde, Anodic bonding using the low expansion glass ceramic Zerodur (R), J Vac Sci Technol B, 23 (2005) 96-98.
    [54] E.D. Zanotto, Glass Crystallization Research - A 36-Year Retrospective. Part II, Methods of Study and Glass-Ceramics, Int J Appl Glass Sci, 4 (2013) 117-124.
    [55] E.D. Zanotto, BRIGHT FUTURE FOR GLASS-CERAMICS, American Ceramics Society Bulletin, 89 (2010) 19-27.
    [56] J. Petzoldt, W. Pannhorst, Chemistry and structure of glass-ceramic materials for high precision optical applications, Journal of Non-Crystalline Solids, 129 (1991) 191-198.
    [57] P. Hartmann, K. Nattermann, T. Dohring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling, S. Lucarelli, ZERODURR glass ceramics for high stress applications, (2009) 74250M-74250M.
    [58] R. Jedamzik, C. Kunisch, T. Westerhoff, ZERODUR for stress mirror polishing, (2011) 812606-812606.
    [59] C.R. Kesavulu, M.Y. Yoo, J.H. Lee, K.S. Lim, P. Dharmaiah, C.K. Jayasankar, P. Babu, Optical and upconversion properties of Er3+-doped oxyfluoride transparent glass-ceramics containing SrF2 nanocrystals, J Mater Res, 28 (2013) 1481-1489.
    [60] J.C. Ion, Chapter 5 - Engineering Materials, in: Laser Processing of Engineering Materials, Butterworth-Heinemann, Oxford, 2005, pp. 139-177.
    [61] I.V. Mochalov, G.T. Petrovsky, Optical materials for information optics, Optical Engineering, 31 (1992) 658-664.
    [62] L. Yin, H. Huang, Brittle materials in nano-abrasive fabrication of optical mirror-surfaces, Precis Eng, 32 (2008) 336-341.
    [63] http://www.schott.com/advanced_optics/english/download, Visited in: June 2014.
    [64] J. William D. Callister, D.G. Rethwisch, Materials Science and engineering, 8th ed., John Wiley & Sons, Inc, United States of America, 2010.
    [65] D.W. Van Krevelen, K. Te Nijenhuis, Chapter 10 - Optical Properties, in: Properties of Polymers (Fourth Edition), Elsevier, Amsterdam, 2009, pp. 287-318.
    [66] P.M. Martin, OPTICAL MATERIALS | Smart Optical Materials, in: B.D.G. Editor-in-Chief: (Ed.) Encyclopedia of Modern Optics, Elsevier, Oxford, 2005, pp. 9-16.
    [67] V.M. Al'tshuller, S.A. Gerasimov, M.V. Grimalyuk, Diamond tool for processing optical items, J Opt Technol+, 78 (2011) 244-248.
    [68] E. Brinksmeier, R. Glabe, L. Schonemann, Review on diamond-machining processes for the generation of functional surface structures, CIRP Journal of Manufacturing Science and Technology, 5 (2012) 1-7.
    [69] R.S. Eriksen, M. Arentoft, J. Gronbaek, N. Bay, Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing, Cirp Ann-Manuf Techn, 61 (2012) 563-566.
    [70] Y. Ballout, J.A. Mathis, J.E. Talia, Solid particle erosion mechanism in glass, Wear, 196 (1996) 263-269.
    [71] M. Achtsnick, P.F. Geelhoed, A.M. Hoogstrate, B. Karpuschewski, Modelling and evaluation of the micro abrasive blasting process, Wear, 259 (2005) 84-94.
    [72] T.G. Bifano, P.A. Bierden, Fixed-abrasive grinding of brittle hard-disk substrates, Int J Mach Tool Manu, 37 (1997) 935-946.
    [73] A.E. Gee, R. Spragg, K.E. Puttick, M. Rudman, Single-point diamond form-finishing of glasses and other macroscopically brittle materials, in: Commercial Applications of Precision Manufacturing at the Sub-Micron Level, International Society for Optics and Photonics, 1992, pp. 39-48.
    [74] I. Inasaki, Grinding of Hard and Brittle Materials, CIRP Annals - Manufacturing Technology, 36 (1987) 463-471.
    [75] P. Shore, Machining of optical surfaces in brittle materials using an ultra-precision machine tool, in, Cranfield University, 1995.
    [76] Z.-P. Wan, Y. Tang, Brittle–ductile mode cutting of glass based on controlling cracks initiation and propagation, Int. Journ. Adv. Manufac. Tech., 43 (2009) 1051-1059.
    [77] Z.W. Zhong, Ductile or Partial Ductile Mode Machining of Brittle Materials, Int. Journ. Adv. Manufac. Tech., 21 (2003) 579-585.
    [78] H. Takino, M. Kanaoka, K. Nomura, Ultraprecision machining of optical surfaces, in, Tokyo, Japan: Nikon Corporation, 2011. http://www. jspe. or. jp/english/sympo/2011s/2011s-1-2. pdf.
    [79] A.R. Boccaccini, Machinability and brittleness of glass-ceramics, Journal of Materials Processing Technology, 65 (1997) 302-304.
    [80] P. Jia, M. Zhou, Scratching and turning experiments on machinability of optical glass SF6 in diamond cutting process, Transactions of Tianjin University, 17 (2011) 280-283.
    [81] A. Evans, E. Charles, Fracture toughness determinations by indentation, J Am Ceram Soc, 59 (1976) 371-372.
    [82] M. Yoda, Subcritical crack growth and crack coalescence in glass, Eng Fract Mech, 29 (1988) 189-196.
    [83] P. Chantikul, G. Anstis, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J Am Ceram Soc, 64 (1981) 539-543.
    [84] B.R. Lawn, A. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, J Am Ceram Soc, 63 (1980) 574-581.
    [85] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J Am Ceram Soc, 64 (1981) 533-538.
    [86] M. Mendiratta, J. Petrovic, Prediction of fracture-surface energy from microhardness indentation in structural ceramics, Journal of Materials Science, 11 (1976) 973-976.
    [87] R.K. Kang, Z.J. Jin, D.M. Guo, F.L. Zhao, F.W. Huo, Experimental investigation of brittle to ductile transition of single crystal silicon by single grain grinding, Key Engineering Materials, 329 (2007) 433-438.
    [88] J. Salomonson, D. Rowcliffe, Measurement of indentation residual stresses in materials susceptible to slow crack growth, J Am Ceram Soc, 78 (1995) 173-177.
    [89] W.K. Neo, A.S. Kumar, M. Rahman, A review on the current research trends in ductile regime machining, Int J Adv Manuf Tech, 63 (2012) 465-480.
    [90] A. Feltz, Oxide Glasses, in: K.H.J.B. Editors-in-Chief: , W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick (Eds.) Encyclopedia of Materials: Science and Technology (Second Edition), Elsevier, Oxford, 2001, pp. 6614-6624.
    [91] B.P. Glass, Tektites, Journal of Non-Crystalline Solids, 67 (1984) 333-344.
    [92] J.A. O'Keefe, Natural glass, Journal of Non-Crystalline Solids, 67 (1984) 1-17.
    [93] N. Belkhir, D. Bouzid, V. Herold, Wear behavior of the abrasive grains used in optical glass polishing, Journal of Materials Processing Technology, 209 (2009) 6140-6145.
    [94] J.C. Lambropoulos, S.D. Jacobs, B.E. Gillman, H.J. Stevens, Deterministic microgrinding, lapping, and polishing of glass-ceramics, J Am Ceram Soc, 88 (2005) 1127-1132.
    [95] J.C. Lambropoulos, S. Xu, T. Fang, Loose abrasive lapping hardness of optical glasses and its interpretation, Appl. Opt., 36 (1997) 1501-1516.
    [96] O.W. Fahnle, Abrasive Jet Polishing Approaches to the Manufacture of Micro-optics with Complex Shapes, in, Optical Society of America, 2012, pp. OM3D.4.
    [97] O.W. Fahnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S.M. Booij, J.J.M. Braat, iTIRM as a tool for qualifying polishing processes, Applied Optics, 41 (2002) 4036-4038.
    [98] R.J.M. van der Bijl, O.W. Fahnle, H. van Brug, J.J.M. Braat, In-process monitoring of grinding and polishing of optical surfaces, Applied Optics, 39 (2000) 3300-3303.
    [99] O.W. Fahnle, H. van Brug, Finishing of optical materials using fluid jet polishing, in: 14th ASPE Annual Meeting, 1999, pp. 509-512.
    [100] O.W. Fahnle, Shaping and Finishing of A3D surface Optical Surfaces, in, TU Delft, Netherlands 1998.
    [101] O.W. Fahnle, H. vanBrug, C.J. vanderLaan, H.J. Frankena, Loose abrasive line-contact machining of a3D surface optical surfaces of revolution, Applied Optics, 36 (1997) 4483-4489.
    [102] O.W. Fahnle, H. vanBrug, C.J. vanderLaan, H.J. Frankena, Generation of on-axis and off-axis conic surfaces of revolution by applying a tubular tool, Applied Optics, 36 (1997) 4490-4496.
    [103] O.W. Fahnle, H. vanBrug, H.J. Frankena, Determination of the optimum starting surface for the generation of a3D surface surfaces of revolution, Applied Optics, 36 (1997) 9112-9114.
    [104] O.W. Fahnle, H. van Brug, C.J. van der Laan, H.J. Frankena, Loose abrasive line-contact machining of a3D surface optical surfaces of revolution, Appl. Opt., 36 (1997) 4483-4489.
    [105] W.A.C.M. Messelink, R. Wager, M. Meeder, H. Looser, T. Wons, K.C. Heiniger, O.W. Fahnle, Optimization of Fluid Jet Polishing CNC tool design.
    [106] O. Horiuchi, J. Ikeno, H. Shibutani, H. Suzuki, Y. Mizukami, Nano-abrasion machining of brittle materials and its application to corrective figuring, Precis Eng, 31 (2007) 47-54.
    [107] A. Beaucamp, R. Freeman, R. Morton, K. Ponudurai, D. Walker, Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing, in: Proc. SPIE, 2008, pp. 701835.
    [108] A.T.H. Beaucamp, A. Matsumoto, Y. Namba, L. Zeeko, Ultra-Precision Fluid Jet and Bonnet Polishing for Next Generation Hard X-Ray Telescope Application, in: Proc. ASPE, 2010, pp. 3184-3181.
    [109] H. Fang, P. Guo, J. Yu, Surface roughness and material removal in fluid jet polishing, Appl. Opt., 45 (2006) 4012-4019.
    [110] W.I. Kordonski, A.B. Shorey, M. Tricard, Magnetorheological jet (MR Jet (TM)) finishing technology, J Fluid Eng-T Asme, 128 (2006) 20-26.
    [111] W.A. Messelink, O.W. Faehnle, Exploiting the Process Stability of Fluid Jet Polishing, in, Optical Society of America, 2008, pp. OThD3.
    [112] T. Sun, L. Sun, F. Wang, S. Liu, Research on theoretical analysis of active fluid jet polishing, (2012) 84162P-84162P.
    [113] A. Beaucamp, Y. Namba, R. Freeman, Dynamic multiphase modeling and optimization of fluid jet polishing process, Cirp Ann-Manuf Techn, 61 (2012) 315-318.
    [114] C.Y. Shi, J.H. Yuan, F. Wu, X. Hou, Y.J. Wan, Material removal model of vertical impinging in fluid jet polishing, Chin Opt Lett, 8 (2010) 323-325.
    [115] C.Y. Shi, J.H. Yuan, F. Wu, Y.J. Wan, Thermal research in fluid jet polishing process, (2010) 76550M-76550M.
    [116] M. Chromcikova, M. Liska, M. Martiskova, Kinetics of the thermal polishing of the rough glass surface, J Therm Anal Calorim, 76 (2004) 107-113.
    [117] S. Kunaporn, M. Ramulu, M. Hashish, Mathematical modeling of ultra-high-pressure waterjet peening, J Eng Mater-T Asme, 127 (2005) 186-191.
    [118] F.J.P. Sousa, D.S. Hosse, I. Reichenbach, J.C. Aurich, J. Seewig, Influence of kinematics and abrasive configuration on the grinding process of glass, Journal of Materials Processing Technology, 213 (2013) 728-739.
    [119] E. Ozkaya, E. Bayraktar, S. Turek, D. Biermann, A novel abrasive blasting process: Abrasive medium classification and CFD simulations, Materialwiss Werkst, 44 (2013) 577-585.
    [120] S. Anwar, D.A. Axinte, A.A. Becker, Finite element modelling of a single-particle impact during abrasive waterjet milling, P I Mech Eng J-J Eng, 225 (2011) 821-832.
    [121] S. Anwar, D.A. Axinte, A.A. Becker, Finite element modelling of abrasive waterjet milled footprints, Journal of Materials Processing Technology, 213 (2013) 180-193.
    [122] C.F. Cheung, L.B. Kong, L.T. Ho, S. To, Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing, Precision Engineering, 35 (2011) 574-590.
    [123] C. Cheung, W. Lee, Modelling and simulation of surface topography in ultra-precision diamond turning, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 214 (2000) 463-480.
    [124] N. Kumar, M. Shukla, Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy, J Comput Appl Math, 236 (2012) 4600-4610.
    [125] V. Kumar, Optimization and Modelling of Process Parameters Involved in Ultrasonic Machining of Glass Using Design of Experiments and Regression Approach, American Journal of Materials Engineering and Technology, 1 (2013) 13-18.
    [126] H.Y. Li, G.Y. Yu, D. Walker, R. Evans, Modelling and measurement of polishing tool influence functions for edge control, J Eur Opt Soc-Rapid, 6 (2011).
    [127] K.L. Pang, T. Nguyen, J.M. Fan, J. Wang, Modelling of the micro-channelling process on glasses using an abrasive slurry jet, International Journal of Machine Tools and Manufacture, 53 (2012) 118-126.
    [128] T. Matsumura, M. Kakishita, Parametric glass milling with simultaneous control, Journal of Manufacturing Processes, 15 (2013) 1-7.
    [129] M. Raghuram, S.S. Joshi, Modeling of Polishing Mechanism in Magnetic Abrasive Polishing, (2008).
    [130] A. Kelm, R. Boerret, S. Sinzinger, Modeling of the polishing process for aspheric optics, (2008) 71020H-71020H.
    [131] P.R. Pagilla, B. Yu, Robotic surface finishing processes: Modeling, control, and experiments, J Dyn Syst-T Asme, 123 (2001) 93-102.
    [132] R.K. Jain, V.K. Jain, P.M. Dixit, Modeling of material removal and surface roughness in abrasive flow machining process, International Journal of Machine Tools and Manufacture, 39 (1999) 1903-1923.
    [133] A.R. Alao, M. Konneh, Surface finish prediction models for precision grinding of silicon, Int J Adv Manuf Tech, 58 (2012) 949-967.
    [134] A. Kelm, M. Hanle, R. Boerret, S. Sinzinger, Simulation and analysis of the polishing process for aspheres, (2009) 74260F-74260F.
    [135] J.E. DeGroote, A.E. Marino, J.P. Wilson, A.L. Bishop, J.C. Lambropoulos, S.D. Jacobs, Removal rate model for magnetorheological finishing of glass, Applied Optics, 46 (2007) 7927-7941.
    [136] H. Fang, P. Guo, J. Yu, Dwell function algorithm in fluid jet polishing, Appl. Opt., 45 (2006) 4291-4296.
    [137] C.-C. Wang, S.-C. Lin, H. Hochen, A material removal model for polishing glass–ceramic and aluminum magnesium storage disks, International Journal of Machine Tools and Manufacture, 42 (2002) 979-984.
    [138] M. Gustavsson, Fluid dynamic mechanisms of particle flow causing ductile and brittle erosion, Wear, 252 (2002) 845-858.
    [139] S. Booij, H.v. Brug, O.W. Fahnle, A mathematical model for machining spot in fluid jet polishing explained, in, Optical Society of America, 2000, pp. OTuA3.
    [140] P. Hed, Calculations of material removal, removal rate, and Preston coefficient in continuous lapping/polishing machines, NASA STI/Recon Technical Report N, 94 (1993) 26804.
    [141] P.E. Miller, T.I. Suratwala, L.L. Wong, M.D. Feit, J.A. Menapace, P.J. Davis, R.A. Steele, The distribution of subsurface damage in fused silica, (2005) 599101-599101.
    [142] E. Ruiz, E. Sohn, E. Luna, L. Salas, A. Cordero, J. Gonzalez, M. Nunz, J. Salinas, I. Cruz-Gonzalez, J. Valdes, V. Cabrera, B. Martinez, New perspectives in hydrodynamic radial polishing techniques for optical surfaces, (2004) 91-100.
    [143] J.P. Choi, B.H. Jeon, B.H. Kim, Chemical-assisted ultrasonic machining of glass, Journal of Materials Processing Technology, 191 (2007) 153-156.
    [144] J. Gan, X. Wang, M. Zhou, B. Ngoi, Z. Zhong, Ultraprecision diamond turning of glass with ultrasonic vibration, Int. Journ. Adv. Manufac. Tech., 21 (2003) 952-955.
    [145] F. Laguarta, N. Lupon, J. Armengol, Optical glass polishing by controlled laser surface-heat treatment, Appl. Opt., 33 (1994) 6508-6513.
    [146] A.K. Singh, S. Jha, P.M. Pandey, Nanofinishing of Fused Silica Glass Using Ball-End Magnetorheological Finishing Tool, Materials and Manufacturing Processes, 27 (2012) 1139-1144.
    [147] F.-J. Shiou, P. Loc, N. Dang, Surface finish of bulk metallic glass using sequential abrasive jet polishing and annealing processes, Int. Journ. Adv. Manufac. Tech., 66 (2013) 1523-1533.
    [148] W.X. Li, G. Lalev, S. Dimov, H. Zhao, D.T. Pham, A study of fused silica micro/nano patterning by focused-ion-beam, Appl Surf Sci, 253 (2007) 3608-3614.
    [149] J. Steyn, K. Naidoo, K. Land, Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel, (2007).
    [150] F.C. Tsai, B.H. Yan, C.Y. Kuan, F.Y. Huang, A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel, International Journal of Machine Tools and Manufacture, 48 (2008) 932-945.
    [151] Y.G. Li, Y.B. Wu, J. Wang, W. Yang, Y.B. Guo, Q. Xu, Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets, Opt Express, 20 (2012) 568-575.
    [152] D. Bouzid, N. Belkhie, T. Aliouane, Optical glass surfaces polishing by cerium oxide particles, IOP Conference Series: Materials Science and Engineering, 28 (2012) 012007.
    [153] O.W. Fahnle, H.H. van Brug, Fluid jet polishing: removal process analysis, (1999) 68-77.
    [154] A.S. Kumar, H.S. Lim, M. Rahman, K. Fathima, A study on the grinding of glass using electrolytic in-process dressing, J Electron Mater, 31 (2002) 1039-1046.
    [155] Y.G. Li, Y.B. Wu, L.B. Zhou, M. Fujimoto, J. Wang, Q. Xu, S. Sasaki, M. Kemmochi, Chemo-Mechanical Manufacturing of Fused Silica by Combining Ultrasonic Vibration with Fixed-Abrasive Pellets, Int J Precis Eng Man, 13 (2012) 2163-2172.
    [156] N. Ong, V. Venkatesh, Semi-ductile grinding and polishing of Pyrex glass, Journal of Materials Processing Technology, 83 (1998) 261-266.
    [157] Y. Namba, K. Yoshida, H. Yoshida, S. Nakai, Ultraprecision grinding of optical materials for high-power lasers, (1998) 320-330.
    [158] Y.S. Chen, Y.L. Lu, Y.M. Yang, J.R. Maa, Surfactant effects on the motion of a droplet in thermocapillary migration, International Journal of Multiphase Flow, 23 (1997) 325-335.
    [159] A.D. Nikolov, D.T. Wasan, S.E. Friberg, Effect of surfactant concentration on dispersion stability as probed by the film thickness stability mechanism, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 118 (1996) 221-243.
    [160] Z.F. Zhang, W.L. Liu, Z.T. Song, Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry, Applied Optics, 49 (2010) 5480-5485.
    [161] W.A.C.M. Messelink, R. Waeger, T. Wons, M. Meeder, K.C. Heiniger, O.W. Faehnle, Prepolishing and finishing of optical surfaces using fluid jet polishing, (2005) 586908-586908.
    [162] H.T. Zhu, C.Z. Huang, J. Wang, Q.L. Li, C.L. Che, Experimental study on abrasive waterjet polishing for hard–brittle materials, International Journal of Machine Tools and Manufacture, 49 (2009) 569-578.
    [163] M.-Y. Tsai, W.-Z. Yang, Water-jet-assisted diamond disk dressing characteristics of CMP polishing pad, Int. Journ. Adv. Manufac. Tech., 62 (2012) 645-654.
    [164] T.-F. Mao, S.-C. Yang, F.-C. Tsai, J.-C. Hung, B.-H. Yan, Experimental Investigation of Abrasive Jet Polishing on the Free-Form Machined Surfaces of SKD61 Mold Steel Using SiC Particles, Materials and Manufacturing Processes, 25 (2010) 965-973.
    [165] H. Liu, J. Wang, C.Z. Huang, Abrasive liquid jet as a flexible polishing tool, International Journal of Materials and Product Technology, 31 (2008) 2-13.
    [166] G. Spur, 5 - Honing and Superfinishing, in: D.M. Ioan, K.T. Hans, H.K.T. Ichiro InasakiA2 - Ioan D. Marinescu, I. Ichiro (Eds.) Handbook of Ceramic Grinding & Polishing, William Andrew Publishing, Norwich, NY, 1999, pp. 324-353.
    [167] I. Inasaki, H.R. Meyer, F. Klocke, J. Shibata, G. Spur, H.K. Tonshoff, H.G. Wobker, 4 - Grinding, in: D.M. Ioan, K.T. Hans, H.K.T. Ichiro InasakiA2 - Ioan D. Marinescu, I. Ichiro (Eds.) Handbook of Ceramic Grinding & Polishing, William Andrew Publishing, Norwich, NY, 1999, pp. 190-323.
    [168] T.K. Doi, T. Kasai, H.K. Tonshoff, 6 - Lapping and Polishing, in: D.M. Ioan, K.T. Hans, H.K.T. Ichiro InasakiA2 - Ioan D. Marinescu, I. Ichiro (Eds.) Handbook of Ceramic Grinding & Polishing, William Andrew Publishing, Norwich, NY, 1999, pp. 354-442.
    [169] A.G. King, 9 - Grinding, in: Ceramic Technology and Processing, William Andrew Publishing, Norwich, NY, 2002, pp. 316-332.
    [170] M.C. Shaw, Precision Finishing*, CIRP Annals - Manufacturing Technology, 44 (1995) 343-348.
    [171] J. Franse, Aspects of precision grinding, in, Technische Universiteit Eindhoven, 1991.
    [172] J.F.G. Oliveira, E.J. Silva, C. Guo, F. Hashimoto, Industrial challenges in grinding, CIRP Annals - Manufacturing Technology, 58 (2009) 663-680.
    [173] T. Tawakoli, High efficiency deep grinding, VDI, 1993.
    [174] H. Eda, K. Kishi, H. Ueno, Cracking and fracture of matrix structure and carbide particles produced by the grinding process, Precision Engineering, 5 (1983) 73-76.
    [175] Q.L. Zhao, J.Y. Chen, H.T. Huang, X.Y. Fang, Grinding Damage of BK7 using Copper-Resin Bond Coarse-Grained Diamond Wheel, Int J Precis Eng Man, 12 (2011) 5-13.
    [176] M. Wakuda, Y. Yamauchi, S. Kanzaki, Material response to particle impact during abrasive jet machining of alumina ceramics, Journal of Materials Processing Technology, 132 (2003) 177-183.
    [177] T. Schuelke, T.A. Grotjohn, Diamond polishing, Diam Relat Mater, 32 (2013) 17-26.
    [178] W. Sweatt, D. Gill, D. Adams, M. Vasile, A. Claudet, Diamond milling of micro-optics, Aerospace and Electronic Systems Magazine, IEEE, 23 (2008) 13-17.
    [179] R. Cai, W.B. Rowe, Assessment of vitrified CBN wheels for precision grinding, International Journal of Machine Tools and Manufacture, 44 (2004) 1391-1402.
    [180] X. Chen, W.B. Rowe, R. Cai, Precision grinding using CBN wheels, International Journal of Machine Tools and Manufacture, 42 (2002) 585-593.
    [181] X. Ding, W. Liew, B. Ngoi, J. Gan, S. Yeo, Wear of CBN tools in ultra-precision machining of STAVAX, Tribology Letters, 12 (2002) 3-12.
    [182] C. Guo, S. Ranganath, D. McIntosh, A. Elfizy, Virtual high performance grinding with CBN wheels, CIRP Annals - Manufacturing Technology, 57 (2008) 325-328.
    [183] M. Jackson, C. Davis, M. Hitchiner, B. Mills, High-speed grinding with CBN grinding wheels—applications and future technology, Journal of Materials Processing Technology, 110 (2001) 78-88.
    [184] D.F. Edwards, P.P. Hed, Optical glass fabrication technology. 1: Fine grinding mechanism using bound diamond abrasives, Appl. Opt., 26 (1987) 4670-4676.
    [185] S. Izman, V.C. Venkatesh, Gelling of chips during vertical surface diamond grinding of BK7 glass, Journal of Materials Processing Technology, 185 (2007) 178-183.
    [186] A. Perveen, W.Y. San, M. Rahman, Fabrication of different geometry cutting tools and their effect on the vertical micro-grinding of BK7 glass, Int J Adv Manuf Tech, 61 (2012) 101-115.
    [187] S. Krar, Grinding technology John Wiley & Sons, Inc., New York, 2001.
    [188] T. Kasai, Chapter 7.2 - 7.2 Lapping and Polishing Technology, in: Handbook of Advanced Ceramics, Academic Press, Oxford, 2003, pp. 611-627.
    [189] J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, O. Rondeau, Loose abrasive slurries for optical glass lapping, Applied Optics, 49 (2010) 5736-5745.
    [190] I.D. Marinescu, W.B. Rowe, B. Dimitrov, H. Ohmori, 13 - Loose abrasive processes, in: Tribology of Abrasive Machining Processes (Second Edition), William Andrew Publishing, Oxford, 2013, pp. 399-421.
    [191] P.P. Hed, D.F. Edwards, Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage, Appl. Opt., 26 (1987) 4677-4680.
    [192] J.A. Wang, Y.G. Li, J.H. Han, Q.A. Xu, Y.B. Guo, Evaluating subsurface damage in optical glasses, J Eur Opt Soc-Rapid, 6 (2011).
    [193] Z. Wang, Y. Wu, Y. Dai, S. Li, Subsurface damage distribution in the lapping process, Appl. Opt., 47 (2008) 1417-1426.
    [194] http://www.prweb.com/releases/2011/5/prweb8487673.htm, Visited in: June 2014.
    [195] Y.H. SOE, I. TANABE, T. IYAMA, DEVELOPMENT OF LAPPING TOOLS FOR MIRROR-LIKE SURFACE PROCESSING OF CEMENTED CARBIDE DIE, Journal of Machine Engineering, 12 (2012).
    [196] S.B. Technology, Lapping and polishing basics, in, South Bay Technology, Califorina, United States.
    [197] I.K. Sung, C.J. Oh, E.S. Lee, O.H. Kim, A swing arm method for profile measurement of large optical concave surfaces in the lapping process, Int. Journ. Adv. Manufac. Tech., 29 (2006) 113-117.
    [198] I. Sung, C. Oh, E. Lee, O. Kim, A swing-arm on-machine inspection method for profile measurement of large optical surface in lapping process, J Mech Sci Technol, 19 (2005) 1576-1581.
    [199] A.J. Fletcher, A. Fioravanti, Polishing and honing processes: An investigation of the thermal properties of mixtures of polyborosiloxane and silicon carbide abrasive, P I Mech Eng C-J Mec, 210 (1996) 255-265.
    [200] B. Goeldel, J. Voisin, D. Dumur, M. El Mansori, M. Frabolot, Flexible right sized honing technology for fast engine finishing, CIRP Annals - Manufacturing Technology, 62 (2013) 327-330.
    [201] S. Bell, H. Maden, G. Needham, The influence of grit size and stone pressure on honing, Precision Engineering, 3 (1981) 48-51.
    [202] M.C. Malburg, J. Raja, D.J. Whitehouse, Characterization of surface texture generated by plateau honing process, Cirp Ann-Manuf Techn, 42 (1993) 637-639.
    [203] H. Weule, M. Eversheim, Improved honing through process-control, Cirp Ann-Manuf Techn, 37 (1988) 339-342.
    [204] E. Salje, M. Von See, Process-optimization in honing, Cirp Ann-Manuf Techn, 36 (1987) 235-239.
    [205] I. Buj-Corral, J. Vivancos-Calvet, M. Coba-Salcedo, Modelling of surface finish and material removal rate in rough honing, Precision Engineering, 38 (2014) 100-108.
    [206] C.-X. Feng, X. Wang, Z. Yu, Neural networks modeling of honing surface roughness parameters defined by ISO 13565, Journal of Manufacturing Systems, 21 (2002) 395-408.
    [207] W.G. Drossel, C. Hochmuth, R. Schneider, An adaptronic system to control shape and surface of liner bores during the honing process, CIRP Annals - Manufacturing Technology, 62 (2013) 331-334.
    [208] I. Buj-Corral, J. Vivancos-Calvet, Roughness variability in the honing process of steel cylinders with CBN metal bonded tools, Precision Engineering, 35 (2011) 289-293.
    [209] P. Pawlus, T. Cieslak, T. Mathia, The study of cylinder liner plateau honing process, Journal of Materials Processing Technology, 209 (2009) 6078-6086.
    [210] http://en.wikipedia.org/wiki/Honing, Visited, in: June 2014, 2014.
    [211] N. Taniguchi, Current status in, and future trends of, ultraprecision machining and ultrafine materials processing, Cirp Ann-Manuf Techn, 32 (1983) 573-582.
    [212] HANDBOOK OF OPTICS, McGraw Hill, New York, 2010.
    [213] Marvin J. Weber, HANDBOOK OF OPTICAL MATERIALS, CRC Press, New York, 2003.
    [214] E. Hecht, Optics, 4th ed., Addison Wesley, United States of America, 2002.
    [215] SCHOTTGLAS, Optical glass in: description of properties, Germany, 2000, pp. 6.
    [216] R.M. Pulselli, R. Ridolfi, B. Rugani, E. Tiezzi, Application of life cycle assessment to the production of man-made crystal glass, Int J Life Cycle Ass, 14 (2009) 490-501.
    [217] K. Krishna, A. Sharma, Evaluation of optical glass composition by optimization methods, Applied optics, 34 (1995) 5628-5634.
    [218] W.E. Hardy, A SHORT HISTORY OF THE MANUFACTURE OF OPTICAL GLASS, The Australasian Journal of Optometry, 13 (1930) 7-8.
    [219] A. Saxena, A. Vagiswari, M. Manjula, Optical glass: its manufacture in India—a historical perspective, Indian journal of history of science, 26 (1991) 219-231.
    [220] K.S.R. Krishna, A. Sharma, Low-power gradient-index microscope objective: design, Applied optics, 35 (1996) 5636-5641.
    [221] H. Bach, N. Neuroth, The properties of optical glass, Springer, 1995.
    [222] H. Dunken, Surface chemistry of optical glasses, Journal of Non-Crystalline Solids, 129 (1991) 64-75.
    [223] N. Shen, P.E. Miller, J.D. Bude, T.A. Laurence, T.I. Suratwala, W.A. Steele, M.D. Feit, L.L. Wong, Thermal annealing of laser damage precursors on fused silica surfaces, Optical Engineering, 51 (2012).
    [224] SCHOTT, Stress in optical glass, in: I. SCHOTT North America (Ed.) Advanced optics, United States of America, 2004, pp. .
    [225] E. Hugot, M. Ferrari, A. Riccardi, M. Xompero, G.R. Lemaitre, R. Arsenault, N. Hubin, Stress polishing of thin shells for adaptive secondary mirrors Application to the Very Large Telescope deformable secondary, Astron Astrophys, 527 (2011).
    [226] P. Guo, H. Fang, J. Yu, Computer-controlled fluid jet polishing, (2007) 672210-672210.
    [227] J.M. Bennett, J.J. Shaffer, Y. Shibano, Y. Namba, Float polishing of optical materials, Applied optics, 26 (1987) 696-703.
    [228] Y. Namba, N. Ohnishi, K. Harada, K. Yoshida, Float Polishing of Calcium Fluoride Single Crystals for Ultra Violet Applications, Proc. 17th Annl. Mtg. of ASPE, (2002) 450-453.
    [229] Y. Namba, H. Tsuwa, R. Wada, N. Ikawa, Ultra-Precision Float Polishing Machine, CIRP Annals - Manufacturing Technology, 36 (1987) 211-214.
    [230] S. Soares, D. Baselt, J.P. Black, K. Jungling, W. Stowell, Float-polishing process and analysis of float-polished quartz, Applied optics, 33 (1994) 89-95.
    [231] A.J. Leistner, E.G. Thwaite, F. Lesha, J.M. Bennett, Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces, Appl. Opt., 31 (1992) 1472-1482.
    [232] H. Hocheng, K.L. Kuo, Fundamental study of ultrasonic polishing of mold steel, International Journal of Machine Tools and Manufacture, 42 (2002) 7-13.
    [233] H. Suzuki, S. Hamada, T. Okino, M. Kondo, Y. Yamagata, T. Higuchi, Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing, CIRP Annals - Manufacturing Technology, 59 (2010) 347-350.
    [234] H. Suzuki, T. Moriwaki, T. Okino, Y. Ando, Development of Ultrasonic Vibration Assisted Polishing Machine for Micro Aspheric Die and Mold, CIRP Annals - Manufacturing Technology, 55 (2006) 385-388.
    [235] M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, H. Mimura, K. Yamauchi, Y. Mori, Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25 (2007) 2110-2113.
    [236] V.I. Kordonskii, S.R. Gorodkin, Magnetorheological polishing of optical surfaces, J Opt Technol+, 79 (2012) 588-598.
    [237] J.W. Lee, Y.K. Cho, M.W. Cho, G.H. Kim, T.J. Je, Optical transmittance recovery of powder blasted micro fluidic channels on fused silica glass using MR polishing, Int J Precis Eng Man, 13 (2012) 1925-1930.
    [238] A.B. Shorey, S.D. Jacobs, W.I. Kordonski, R.F. Gans, Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing, Applied Optics, 40 (2001) 20-33.
    [239] A. Sidpara, V.K. Jain, Experimental investigations into forces during magnetorheological fluid based finishing process, Int J Mach Tool Manu, 51 (2011) 358-362.
    [240] A.K. Singh, S. Jha, P.M. Pandey, Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool, Int J Mach Tool Manu, 51 (2011) 142-151.
    [241] G. Mann, J. Vogel, M. Zoheidi, M. Eberstein, J. Kruger, Breakdown limits of optical multimode fibers for the application of nanosecond laser pulses at 532 nm and 1064 nm wavelength, Appl Surf Sci, 255 (2009) 5519-5522.
    [242] J.W. Murray, P.K. Kinnell, A.H. Cannon, B. Bailey, A.T. Clare, Surface finishing of intricate metal mould structures by large-area electron beam irradiation, Precis Eng, 37 (2013) 443-450.
    [243] K.M. Nowak, H.J. Baker, D.R. Hall, Efficient laser polishing of silica micro-optic components, Applied Optics, 45 (2006) 162-171.
    [244] M. Sergeeva, K. Khrenikov, T. Hellmuth, R. Boerret, Sub surface damage measurements based on short coherent interferometry, J Eur Opt Soc-Rapid, 5 (2010).
    [245] L. Zhou, Y. Dai, X. Xie, S. Li, Optimum removal in ion-beam figuring, Precision Engineering, 34 (2010) 474-479.
    [246] T. Suratwala, R. Steele, M.D. Feit, L. Wong, P. Miller, J. Menapace, P. Davis, Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing, Journal of Non-Crystalline Solids, 354 (2008) 2023-2037.
    [247] T.I. Suratwala, P.E. Miller, P.R. Ehrmann, R.A. Steele, Polishing slurry induced surface haze on phosphate laser glasses, Journal of Non-Crystalline Solids, 351 (2005) 2091-2101.
    [248] A.A. Tesar, B.A. Fuchs, Removal rates of fused silica with cerium oxide/pitch polishing, in: 8th Intl Symp on Gas Flow and Chemical Lasers, International Society for Optics and Photonics, 1992, pp. 80-90.
    [249] T.I. Suratwala, M.D. Feit, W.A. Steele, Toward Deterministic Material Removal and Surface Figure During Fused Silica Pad Polishing, J Am Ceram Soc, 93 (2010) 1326-1340.
    [250] W.B. Williams, B.A. Mullany, W.C. Parker, P.J. Moyer, M.H. Randles, Using quantum dots to tag subsurface damage in lapped and polished glass samples, Applied Optics, 48 (2009) 5155-5163.
    [251] J.J. Boy, M. Aiguille, A. Boulouize, C. Khan-Malek, Developments in Micro Ultrasonic Machining (MUSM), in: M. Wolfgang, D. Stefan, S.D. Bertrand FillonA2 - Wolfgang Menz, F. Bertrand (Eds.) 4M 2006 - Second International Conference on Multi-Material Micro Manufacture, Elsevier, Oxford, 2006, pp. 123-126.
    [252] V. Jain, A.K. Sharma, P. Kumar, Recent Developments and Research Issues in Microultrasonic Machining, ISRN Mechanical Engineering, 2011 (2011).
    [253] V.V. Rogov, W. Kottler, V.P. Sobol, Y.D. Filatov, New technology of precision polishing of glass optics, Optical Engineering, 40 (2001) 1641-1645.
    [254] J.S. Taylor, Precision non-contact polishing tool, in, US Patent 5,591,068, 1997.
    [255] N. Ramachandran, N. Ramakrishnan, A review of abrasive jet machining, Journal of Materials Processing Technology, 39 (1993) 21-31.
    [256] T. Hoshino, Y. Kurata, Y. Terasaki, K. Susa, Mechanism of polishing of SiO2 films by CeO2 particles, Journal of Non-Crystalline Solids, 283 (2001) 129-136.
    [257] Z. Shen, B. Ma, Z. Wang, Y. Ji, T. Liu, H. Liu, Fabrication of flat and supersmooth surfaces with bowl-feed polishing process, in: 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, International Society for Optics and Photonics, 2007, pp. 67220U-67220U-67227.
    [258] R. McIntosh Jr, R. Paquin, Chemical-mechanical polishing of low-scatter optical surfaces, Applied optics, 19 (1980) 2329-2331.
    [259] C.J. Evans, R.E. Parks, Renewable polishing lap, in, US Patent 5,897,424, 1999.
    [260] Y.-T. Su, S.-Y. Wang, J.-S. Hsiau, On machining rate of hydrodynamic polishing process, Wear, 188 (1995) 77-87.
    [261] Y.-T. Su, T.-C. Hung, C.-C. Horng, An experimental study on tool wear of hydrodynamic polishing process, Wear, 246 (2000) 117-129.
    [262] Y.-T. Su, C.-C. Horng, Y.-D. Hwang, W.-K. Guo, Effects of tool surface irregularities on machining rate of a hydrodynamic polishing process, Wear, 199 (1996) 89-99.
    [263] Y.A. Gharbia, J. Katupitiya, Loose abrasive blasting as an alternative to slurry polishing of optical fibre end faces, International Journal of Machine Tools and Manufacture, 43 (2003) 1413-1418.
    [264] D.F. Edwards, P.P. Hed, Optical glass fabrication technology. 1: Fine grinding mechanism using bound diamond abrasives, Applied optics, 26 (1987) 4670-4676.
    [265] F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces, Appl. Phys. A, 91 (2008) 551-559.
    [266] L. Peverini, I. Kozhevnikov, A. Rommeveaux, P. Vaerenbergh, L. Claustre, S. Guillet, J.-Y. Massonnat, E. Ziegler, J. Susini, Ion beam profiling of a3D surface X-ray mirrors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616 (2010) 115-118.
    [267] K. Yamamura, T. Takiguchi, M. Ueda, H. Deng, A.N. Hattori, N. Zettsu, Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface, CIRP Annals - Manufacturing Technology, 60 (2011) 571-574.
    [268] M. Castelli, R. Jourdain, P. Morantz, P. Shore, Rapid optical surface figuring using reactive atom plasma, Precision Engineering, 36 (2012) 467-476.
    [269] V. Jain, Magnetic field assisted abrasive based micro-/nano-finishing, Journal of Materials Processing Technology, 209 (2009) 6022-6038.
    [270] S. Jha, V.K. Jain, Design and development of the magnetorheological abrasive flow finishing (MRAFF) process, International Journal of Machine Tools and Manufacture, 44 (2004) 1019-1029.
    [271] V. Jain, A. Sidpara, M. Sankar, M. Das, Nano-finishing techniques: a review, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226 (2012) 327-346.
    [272] D. Allen, P. Shore, R. Evans, C. Fanara, W. O’Brien, S. Marson, W. O’Neill, Ion beam, focused ion beam, and plasma discharge machining, Cirp Ann-Manuf Techn, 58 (2009) 647-662.
    [273] M. Castelli, R. Jourdain, P. Morantz, P. Shore, Reactive Atom Plasma for Rapid Figure Correction of Optical Surfaces, Key Engineering Materials, 496 (2012) 182-187.
    [274] P. Shore, P. Morantz, Ultra-precision: enabling our future, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370 (2012) 3993-4014.
    [275] K.M. Nowak, H.J. Baker, D.R. Hall, Efficient laser polishing of silica micro-optic components, Appl. Opt., 45 (2006) 162-171.
    [276] T. Kasai, K. Horio, A. Kobayashi, Improvement of conventional polishing conditions for obtaining super smooth surfaces of glass and metal works, Cirp Ann-Manuf Techn, 39 (1990) 321-324.
    [277] T. Kasai, F. Matumoto, A. Kobayashi, Newly Developed Fully Automatic Polishing Machines for Obtainable Super-Smooth Surfaces of Compound Semiconductor Wafers, CIRP Annals - Manufacturing Technology, 37 (1988) 537-540.
    [278] V. Jain, Advanced (non-traditional) machining processes, in: Machining, Springer, 2008, pp. 299-327.
    [279] A. Velayudham, Modern Manufacturing Processes: A Review, Journal on Design and Manufacturing Technologies, 1 (2007) 31.
    [280] Y.-S. Ghim, S.-J. You, H.-G. Rhee, H.-S. Yang, Y.-W. Lee, Ultra-precision Surface Polishing using Ion Beam Figuring, in: 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012), International Society for Optics and Photonics, 2012, pp. 84161O-84161O-84164.
    [281] J. Kang, M. Hadfield, The polishing process of advanced ceramic balls using a novel eccentric lapping machine, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219 (2005) 493-503.
    [282] Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang, Y. Guo, The characteristics of optics polished with a polyurethane pad, Opt. Express, 16 (2008) 10285-10293.
    [283] C.R. Dunn, D.D. Walker, Pseudo-random tool paths for CNC sub-aperture polishing and other applications, Opt Express, 16 (2008) 18942-18949.
    [284] D. Liao, Z. Yuan, C. Tang, R. Xie, X. Chen, Mid-Spatial Frequency Error (PSD-2) of optics induced during CCOS and full-aperture polishing, J Eur Opt Soc-Rapid, 8 (2013).
    [285] M. Laslandes, N. Rousselet, M. Ferrari, E. Hugot, J. Floriot, S. Vives, G. Lemaitre, J.F. Carre, M. Cayrel, Stress polishing of E-ELT segment at LAM: full-scale demonstrator status, (2011) 816903-816903.
    [286] A.T. Beaucamp, R.R. Freeman, A. Matsumoto, Y. Namba, Fluid jet and bonnet polishing of optical moulds for application from visible to x-ray, in: SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, 2011, pp. 81260U-81260U-81268.
    [287] Y. Namba, A.T. Beaucamp, A. Matsumoto, R. Freeman, Fluid Jet and Bonnet Polishing of Optical Moulds.
    [288] L. Samuels, The nature of mechanically polished metal surfaces: the surface deformation produced by the abrasion and polishing of 70: 30 brass, Journal of the Institute of Metals, 85 (1956) 51-62.
    [289] K.H. Fiedler, Processing (grinding and polishing), in: The Properties of Optical Glass, Springer, 1998, pp. 245-262.
    [290] M. Kulawski, K. Henttinen, I. Suni, F. Weimar, J. Makinen, A novel CMP process on fixed abrasive pads for the manufacturing of highly planar thick film SOI substrates, in: MRS Proceedings, Cambridge Univ Press, 2003.
    [291] Y. Li, Y. Wu, L. Zhou, M. Fujimoto, Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher, International Journal of Machine Tools and Manufacture.
    [292] H.-W. Jeong, T. Aoki, T. Hatsuzawa, High-efficiency fixed abrasive polishing method for quartz crystal blanks, International Journal of Machine Tools and Manufacture, 44 (2004) 167-173.
    [293] T. Enomoto, U. Satake, T. Fujita, T. Sugihara, Spiral-structured fixed-abrasive pads for glass finishing, CIRP Annals - Manufacturing Technology, 62 (2013) 311-314.
    [294] Y. Xie, B. Bhushan, Effects of particle size, polishing pad and contact pressure in free abrasive polishing, Wear, 200 (1996) 281-295.
    [295] E. Brinksmeier, O. Riemer, A. Gessenharter, Finishing of structured surfaces by abrasive polishing, Precision Engineering, 30 (2006) 325-336.
    [296] X. Tonnellier, P. Shore, P. Morantz, A. Baldwin, D. Walker, G. Yu, R. Evans, Sub-surface damage issues for effective fabrication of large optics, (2008) 70180F-70180F.
    [297] S.R. Wilson, D.W. Reicher, J.R. McNeil, Surface Figuring Using Neutral Ion Beams, (1989) 74-81.
    [298] S.R. Wilson, J.R. McNeil, Neutral Ion Beam Figuring Of Large Optical Surfaces, (1987) 320-324.
    [299] S. Zeng, L. Blunt, X. Jiang, Material removal investigation in bonnet polishing of CoCr alloy, (2012).
    [300] A. Beaucamp, Y. Namba, Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing, CIRP Annals - Manufacturing Technology, 62 (2013) 315-318.
    [301] D.D. Walker, R. Freeman, R. Morton, G. McCavana, A. Beaucamp, Use of the ‘Precessions’ TM process for prepolishing and correcting 2D & 2½D form, (2006).
    [302] J. Zhang, B. Wang, S. Dong, Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surfaces, Frontiers of Electrical and Electronic Engineering in China, 3 (2008) 480-487.
    [303] N. Shen, M.J. Matthews, J.E. Fair, J.A. Britten, H.T. Nguyen, D. Cooke, S. Elhadj, S.T. Yang, Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica, Appl Surf Sci, 256 (2010) 4031-4037.
    [304] F. Vega, N. Lupon, J.A. Cebrian, F. Laguarta, Laser application for optical glass polishing, Optical Engineering, 37 (1998) 272-279.
    [305] E. Ukar, A. Lamikiz, S. Martinez, F. Estalayo, I. Tabernero, Laser Polishing of GGG70L Cast Iron with 2D Scan-head, Procedia Engineering, 63 (2013) 53-59.
    [306] J. Hildebrand, K. Hecht, J. Bliedtner, H. Muller, Advanced Analysis of Laser Beam Polishing of Quartz Glass Surfaces, Physics Procedia, 39 (2012) 277-285.
    [307] T. Mai, G. Lim, Micromelting and its effects on surface topography and properties in laser polishing of stainless steel, Journal of Laser Applications, 16 (2004) 221.
    [308] H. Hocheng, K.L. Kuo, Fundamental study of ultrasonic polishing of mold steel, Int J Mach Tool Manu, 42 (2002) 7-13.
    [309] Z.N. Guo, T.C. Lee, T.M. Yue, W.S. Lau, The design of an ultrasonic polishing tool by the transfer-matrix method, Journal of Materials Processing Technology, 102 (2000) 122-127.
    [310] F. Mallinder, B. Proctor, The strengths of flame-polished sapphire crystals, Philosophical Magazine, 13 (1966) 197-208.
    [311] V.V. Yaminsky, P.M. Claesson, J.C. Eriksson, Wetting Hysteresis and Instability of Hydrophobized Glass and Mica Surfaces, Journal of Colloid and Interface Science, 161 (1993) 91-100.
    [312] K. Kim, S. Kuroda, M. Watanabe, R.Z. Huang, H. Fukanuma, H. Katanoda, Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings, J Therm Spray Techn, 21 (2012) 550-560.
    [313] M. Yaul, R. Bhatti, S. Lawrence, Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in-vitro fertilization (iVF) micro-pipettes, Biomed Microdevices, 10 (2008) 123-128.
    [314] Z.-R. Yu, C.-H. Kuo, C.-C. Chen, W.-Y. Hsu, D.P. Tsai, Study of air-driving fluid jet polishing, (2011) 812611-812611.
    [315] A.P. Verma, G.K. Lal, An experimental study of abrasive jet machining, International Journal of Machine Tool Design and Research, 24 (1984) 19-29.
    [316] C.Y. Shi, J.H. Yuan, F. Wu, Y.J. Wan, Y. Han, Analysis of parameters in fluid jet polishing by CFD, (2009) 72821Y-72821Y.
    [317] S.M. Booij, H. van Brug, J.J.M. Braat, O.W. Fa‥hnle, Nanometer deep shaping with fluid jet polishing, Optical Engineering, 41 (2002) 1926-1931.
    [318] Z. Pei, P. Ferreira, Modeling of ductile-mode material removal in rotary ultrasonic machining, International Journal of Machine Tools and Manufacture, 38 (1998) 1399-1418.
    [319] H. Zarepour, S.H. Yeo, Single abrasive particle impingements as a benchmark to determine material removal modes in micro ultrasonic machining, Wear, 288 (2012) 1-8.
    [320] T. Dow, Ductile-Regime Grinding: A New Technology for Machining Brittle Materials, (1991).
    [321] I. Finnie, D. McFadden, On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence, Wear, 48 (1978) 181-190.
    [322] G. Tilly, A two stage mechanism of ductile erosion, Wear, 23 (1973) 87-96.
    [323] G. Sheldon, A. Kanhere, An investigation of impingement erosion using single particles, Wear, 21 (1972) 195-209.
    [324] J. Neilson, A. Gilchrist, Erosion by a stream of solid particles, Wear, 11 (1968) 111-122.
    [325] Z. Zhong, V. Venkatesh, Semi-Ductile Grinding and Polishing of Ophthalmic Aspherics and Spherics*, Cirp Ann-Manuf Techn, 44 (1995) 339-342.
    [326] G. Sheldon, I. Finnie, The mechanism of material removal in the erosive cutting of brittle materials, Journal of Engineering for Industry, 88 (1966) 393.
    [327] J. Bitter, A study of erosion phenomena: Part II, Wear, 6 (1963) 169-190.
    [328] J. Bitter, A study of erosion phenomena part I, Wear, 6 (1963) 5-21.
    [329] S.M. Wiederhorn, T. Fett, G. Rizzi, M.J. Hoffmann, J.P. Guin, The effect of water penetration on crack growth in silica glass, Eng Fract Mech, 101 (2013) 3-16.
    [330] R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture, 100 (1999) 55-83.
    [331] B. Denkena, J. Koehler, A. Moral, Ductile and brittle material removal mechanisms in natural nacre—A model for novel implant materials, Journal of Materials Processing Technology, 210 (2010) 1827-1837.
    [332] I. Finnie, G. Stevick, J. Ridgely, The influence of impingement angle on the erosion of ductile metals by angular abrasive particles, Wear, 152 (1992) 91-98.
    [333] R. Bellman, A. Levy, Erosion mechanism in ductile metals, Wear, 70 (1981) 1-27.
    [334] D. Marshall, B. Lawn, A. Evans, Elastic/plastic indentation damage in ceramics: The lateral crack system, J Am Ceram Soc, 65 (1982) 561-566.
    [335] B. Lawn, R. Wilshaw, Indentation fracture: principles and applications, Journal of Materials Science, 10 (1975) 1049-1081.
    [336] A. Carpinteri, B. Chiaia, S. Invernizzi, Numerical analysis of indentation fracture in quasi-brittle materials, Eng Fract Mech, 71 (2004) 567-577.
    [337] L. Zhou, J. Shimizu, A. Muroya, H. Eda, Material removal mechanism beyond plastic wave propagation rate, Precision Engineering, 27 (2003) 109-116.
    [338] E. Johnson, Process region changes for rapidly propagating cracks, International Journal of Fracture, 55 (1992) 47-63.
    [339] M.V. Swain, B.R. Lawn, Indentation fracture in brittle rocks and glasses, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13 (1976) 311-319.
    [340] T. Matsumura, T. Muramatsu, S. Fueki, Abrasive water jet machining of glass with stagnation effect, CIRP Annals - Manufacturing Technology, 60 (2011) 355-358.
    [341] I. Finnie, Erosion of surfaces by solid particles, Wear, 3 (1960) 87-103.
    [342] D. Kumar, S.K. Biswas, Effect of surfactant dispersed in oil on interaction force between an oil film and a steel substrate in water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377 (2011) 195-204.
    [343] D. Fairhurst, M.P. Aronson, M.L. Ohm, E.D. Goddard, Some comments on non-ionic surfactant concentration effects in oil-in-water emulsions, Colloids and Surfaces, 7 (1983) 153-159.
    [344] J.B. Zu, G.T. Burstein, I.M. Hutchings, A comparative study of the slurry erosion and free-fall particle erosion of aluminium, Wear, 149 (1991) 73-84.
    [345] C. Miao, S.N. Shafrir, J.C. Lambropoulos, J. Mici, S.D. Jacobs, Shear stress in magnetorheological finishing for glasses, Appl. Opt., 48 (2009) 2585-2594.
    [346] A. Perveen, M.P. Jahan, M. Rahman, Y.S. Wong, A study on microgrinding of brittle and difficult-to-cut glasses using on-machine fabricated poly crystalline diamond (PCD) tool, Journal of Materials Processing Technology, 212 (2012) 580-593.
    [347] S.M. Booij, O.W. Fahnle, J.J.M. Braat, Shaping with fluid jet polishing by footprint optimization, Applied Optics, 43 (2004) 67-69.
    [348] N.I.E. Baisheng, W. Hui, L.I. Lei, Z. Jufeng, Y. Hua, L.I.U. Zhen, W. Longkang, L. Hailong, Numerical investigation of the flow field inside and outside high-pressure abrasive waterjet nozzle, Procedia Engineering, 26 (2011) 48-55.
    [349] D. Jianxin, L. Lili, Z. Jinlong, S. Junlong, Erosion wear of laminated ceramic nozzles, International Journal of Refractory Metals and Hard Materials, 25 (2007) 263-270.
    [350] M. Nanduri, D.G. Taggart, T.J. Kim, The effects of system and geometric parameters on abrasive water jet nozzle wear, International Journal of Machine Tools and Manufacture, 42 (2002) 615-623.
    [351] J.L. Sun, C.X. Liu, J. Tian, B.F. Feng, Erosion behavior of B4C based ceramic nozzles by abrasive air-jet, Ceramics International, 38 (2012) 6599-6605.
    [352] R.K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, Wiley-Interscience, United Staes of America, 2001.
    [353] M.J. Anderson, P.J. Whitcomb, Design of experiments, Wiley Online Library, 1974.
    [354] G.S. Peace, Taguchi Methods: a hands-on approach to quality engineering Addison-Wesley United States of America, 1993.
    [355] G. Taguchi, S. Chowdhury, Y. Wu, Taguchi's Quality Engineering Handbook, Wiley &Sons, Inc., United States of America, 2004.
    [356] S. Maghsoodloo, G. Ozdemir, V. Jordan, C.-H. Huang, Strengths and limitations of taguchi's contributions to quality, manufacturing, and process engineering, Journal of Manufacturing Systems, 23 (2004) 73-126.
    [357] G. Taguchi, L.W. Tung, D. Clausing, System of experimental design: engineering methods to optimize quality and minimize costs, UNIPUB/Kraus International Publications New York, 1987.
    [358] V.S.T.V.T. Hosokawa, Achieving robust designs through quality engineering: Taguchi method, Fujitsu Sci. Tech. J, 43 (2007) 105-112.
    [359] J.H.v. Lint, R.M. Wilson, A Course in Combinatorics, Second ed., Cambridge University Press, USA, New York, 2001.
    [360] D.C. Montgomery, Design and analysis of experiments, Wiley. com, 2006.
    [361] D.E. Coleman, D.C. Montgomery, A systematic approach to planning for a designed industrial experiment, Technometrics, 35 (1993) 1-12.
    [362] D.C. Montgomery, D.C. Montgomery, D.C. Montgomery, Design and analysis of experiments, Wiley New York, 1984.
    [363] R.L. Mason, R.F. Gunst, J.L. Hess, Statistical design and analysis of experiments: with applications to engineering and science, Wiley. com, 2003.
    [364] P.J. Ross, Taguchi techinques for quality engineering, McGraw-Hill, Taiwan, 2008.
    [365] N. Tesla, Turbine, in: U.S.P. Office (Ed.), , United States, 1913, pp. 1-5.
    [366] G. Finke, R. Stocklinger, P.O. Finke, K.Z.U.R. Nedden, Tesla-Turbine und Verfahren zur Wandlung von Stromungsenergie eines Fluids in kinetische Energie einer Welle einer Tesla-Turbine Tesla turbine and process for the conversion of flow energy of a fluid to kinetic energy of a turbine shaft of a Tesla, in, Google Patents, Germany, 2013.
    [367] J. Shi, Tesla turbine, in, Google Patents, 2012.
    [368] H. Da Silva Couto, J.C. Batista, Hybrid tesla-pelton wheel disc turbine, in, Google Patents, 2010.
    [369] H. Entrican, Tesla turbine, in: United States of America, Google Patents, 2002.
    [370] R.A. Oklejas, E. Oklejas, Tesla-type turbine with alternating spaces on the rotor of cooling air and combustion gases, in, Google Patents, 1976.
    [371] O.J. Eli, O.R. A, Gas regeneration tesla-type turbine, in, Google Patents, United States of Anmerica, 1975.
    [372] N. Tesla, Fluid propulsion, in, Google Patents, 1913.
    [373] C. Tan Wee, A.A. Rahman, J. Foo Shy, A. Lim Eng, Optimization of Tesla turbine using Computational Fluid Dynamics approach, in: Industrial Electronics and Applications (ISIEA), 2011 IEEE Symposium on, 2011, pp. 477-480.
    [374] A.F.R. Ladino, Numerical Simulation of the Flow Field in a Friction-Type Turbine (Tesla Turbine), Dip Thesis, Vienna University of Technology, Vienna, (2004).
    [375] S. Hasinger, L. Kehrt, Investigation of a shear-force pump, Journal of Engineering for Power, 85 (1963) 201.
    [376] A. Guha, S. Sengupta, The fluid dynamics of the rotating flow in a Tesla disc turbine, European Journal of Mechanics - B/Fluids, 37 (2013) 112-123.
    [377] S. Sengupta, A. Guha, A theory of Tesla disc turbines, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226 (2012) 650-663.
    [378] V. Krishnan, Z. Iqbal, M. Maharbiz, A micro Tesla turbine for power generation from low pressure heads and evaporation driven flows, in: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, IEEE, 2011, pp. 1851-1854.
    [379] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics - The finite volume method, Second Edition ed., Pearson Education Limited, England, 2007.
    [380] K.G. Swift, J.D. Booker, Chapter 7 - Non-traditional Machining Processes, in: K.G. Swift, J.D. Booker (Eds.) Manufacturing Process Selection Handbook, Butterworth-Heinemann, Oxford, 2013, pp. 205-226.
    [381] B. Mullany, M. Mainuddin, The influence of process vibrations on precision polishing metrics, CIRP Annals - Manufacturing Technology, 61 (2012) 555-558.
    [382] Z.Z. Li, S.Y. Li, Y.F. Dai, X.Q. Peng, Optimization and application of influence function in abrasive jet polishing, Applied Optics, 49 (2010) 2947-2953.
    [383] SCHOTTNorthAmerica, Optical glass data sheet, in: I. SCHOTT North America (Ed.), USA, 2012.
    [384] N. Reisert, Application and machining of Zerodur for optical purposes, (1991) 171-177.
    [385] I. SCHOTT North America, Advanced Optics, in: Glass made of idea, Germany, 2011.
    [386] Keyence, VK analyzer refernce manual, in: Keyence corparation of America, Japan, 2007.
    [387] H. Fang, P. Guo, J. Yu, Research on the mathematical model of fluid jet polishing, (2006) 61490J-61490J.
    [388] D.D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, S.-W. Kim, The ‘Precessions’ tooling for polishing and figuring flat, 3D surface and aspheric surfaces, Opt. Express, 11 (2003) 958-964.
    [389] V.G. Kuks, A.G. Khusnutdinov, Producing aspheric optical surfaces of rotation in a wide range of process parameters, J. Opt. Technol., 74 (2007) 27-33.
    [390] J. William D. Callister, Materials Science and Engineering: an Introduction, 7th ed., John Wiley & Sons, Inc., United States of America, 2007.
    [391] C. Schade, A. Lawley, E. Wagner, Development of a High-Strength Dual-Phase P/M Stainless Steel, ADVANCES IN POWDER METALLURGY AND PARTICULATE MATERIALS, 2 (2005) 7.
    [392] K. Eun-Goo, C. Byeong-Yeol, H. Won-Pyo, C. Hon-Zong, L. Seok-Woo, FIB-Sputtering Characteristic of Mold Material and Nano Grid Pattern Fabrication, in: Smart Manufacturing Application, 2008. ICSMA 2008. International Conference on, 2008, pp. 455-458.
    [393] J.H. Oh, S.H. Lee, Prediction of surface roughness in magnetic abrasive finishing using acoustic emission and force sensor data fusion, P I Mech Eng B-J Eng, 225 (2011) 853-865.
    [394] F.J. Shiou, C.C. Hsu, Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre, Journal of Materials Processing Technology, 205 (2008) 249-258.
    [395] http://www.matweb.com/Search/MaterialGroupSearch.aspx?GroupID=222, Visited in: June 2014.
    [396] C.-A. Lu, Development of a small rotational abrasive multi-jet micro polishing tool in: Department of Mechanical Engineering, National Taiwan University of Science and technology, 2012.
    [397] Reade, Properties of abrasive, in: R.A. Materials (Ed.), 2013.
    [398] I. LAPMASTER, http://www.lapmaster-abrasives.co.uk/Cerium/default.html, Precision surface solutions, Visited, in: May 2014.
    [399] F. CORP., http://www.fujimico.com/catalog/Lapping%20&%20Grinding/10, White Fused Alumina, Visited in: May 2014.
    [400] Interlloy-Pty, http://www.interlloy.com.au/our-products/stainless-steel/, Stainless steel alloys, description and application, visited in: May 2014.

    QR CODE