簡易檢索 / 詳目顯示

研究生: 葉志偉
Chih-Wei Yeh
論文名稱: 多射流熔融增材製造技術 快速冷卻對熱應力變形的影響研究
Research on the effect of rapid cooling of multi jet fusion additive manufacturing technology on thermal stress and deformation
指導教授: 鄭正元
Jeng-Ywan Jeng
陳俊名
Chun-Ming Chen
口試委員: 鄭正元
Jeng-Ywan Jeng
陳俊名
Chun-Ming Chen
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 153
中文關鍵詞: 多射流熔融增材製造快速冷卻熱應力變形拉力試驗衝擊試驗
外文關鍵詞: MJF, multi jet fusion, AM
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 圖目錄 表目錄 中文摘要 Abstract 第1章 研究背景與目的(Research background and purpose) 第2章 文獻回顧(Literature review) 2.1 材料科學(Materials science) 2.2 機械性質(Mechanical properties) 第3章 實驗規劃(Experimental planning) 3.1 設備與材料(Machine and materials) 3.2 試片準備(samples preparation) 3.2.1 試片種類(Types of specimens) 3.2.2 試片擺放方向(Orientation of specimens) 3.2.3 列印參數(Printed parameter) 3.3 實驗方法(Experimental methodology) 3.3.1 實驗目的(Purpose of the experiment) 3.3.2 冷卻條件及噴砂(Cooling conditions and sand blasting ) 3.3.3 實驗設備(Experimental equipment) 第4章 結果與討論(Results and discussion) 4.1 PA12粉末(Powders of PA12) 4.2 粉末床溫度測量(Temperature measure) 4.3 尺寸精度(Dimensional accuracy) 4.4 表面性質(Surface properties) 4.4.1 SEM檢測(SEM inspection) 4.4.2 表面粗糙度(Surface roughness) 4.4.3 曲面試片表面特徵(Curved surface features) 4.5 熱性質(Thermal properties) 4.6 機械性質(Mechanical properties) 4.6.1 拉力試驗(Tensile test) 4.6.2 衝擊試驗(Impact test) 4.6.3 密度量測(Density measurement) 第5章 結論(Conclusions) 文獻參考

    1. HP Development Company. HP Jet Fusion 4200 Industrial 3D Printing Solution. 2021 [cited 2021 12/31]; Available from: https://www.hp.com/us-en/printers/3d-printers/products/multi-jet-fusion-4200.html.
    2. 陳菁菘, et al., 工業生產用3D列印發展趨勢及應用, in 材料世界網. 2019.
    3. Holmström, J., et al., Rapid manufacturing in the spare parts supply chain. Journal of Manufacturing Technology Management, 2010. 21(6): p. 687-697.
    4. Saleh Alghamdi, S., et al., Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers (Basel), 2021. 13(5).
    5. Geiselman, B. Additive manufacturing industry grows in 2020 despite pandemic. 2021; Available from: https://www.plasticsmachinerymanufacturing.com/additive-manufacturing/article/21217007/additive-manufacturing-industry-grows-in-2020-despite-pandemic.
    6. Zuniga, J.M. and A. Cortes, The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices, 2020. 17(6): p. 477-481.
    7. Li, N., et al., Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. Curr Opin Solid State Mater Sci, 2022. 26(1): p. 100966.
    8. 鄭正元, et al., 3D列印積層製造技術與應用, ed. 2. 2018.
    9. Rosso, S., et al., In-depth comparison of polyamide 12 parts manufactured by Multi Jet Fusion and Selective Laser Sintering. Additive Manufacturing, 2020. 36.
    10. Hopkinson, N. and P. Erasenthiran, High speed sintering—early research into a new rapid manufacturing process, in: Proceedings of the Solid Freeform Fabrication Symposium. 2004. p.312-320.
    11. Hopkinson, N. and P. Erasenthiran, High speed sintering—continuing research into a new rapid manufacturing process, in: Proceedings of the 17th SFF Symposium Austin, TX. 2006. p.682-691.
    12. Khoshnevis, B., et al., SIS – a new SFF method based on powder sintering. Rapid Prototyping Journal, 2003. 9(1): p. 30-36.
    13. HP Development Company, L.P., ,, HP Jet Fusion 3D 4200列印使用指南. 2018.
    14. Dadbakhsh, S., et al., Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts. European Polymer Journal, 2017. 92: p. 250-262.
    15. Riedelbauch, J., D. Rietzel, and G. Witt, Analysis of material aging and the influence on the mechanical properties of polyamide 12 in the Multi Jet Fusion process. Additive Manufacturing, 2019. 27: p. 259-266.
    16. Wu, H., et al., Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020. 111.
    17. Sillani, F., et al., Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance. Additive Manufacturing, 2019. 27: p. 32-41.
    18. Scherer, B., I.L. Kottenstedde, and F.-M. Matysik, Material characterization of polyamide 12 and related agents used in the multi-jet fusion process: complementary application of high-resolution mass spectrometry and other advanced instrumental techniques. Monatshefte für Chemie - Chemical Monthly, 2020. 151(8): p. 1203-1215.
    19. O’ Connor, H.J. and D.P. Dowling, Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process. Additive Manufacturing, 2020. 31.
    20. Chen, J., et al., High-strength light-weight aramid fibre/polyamide 12 composites printed by Multi Jet Fusion. Virtual and Physical Prototyping, 2022. 17(2): p. 295-307.
    21. Mele, M., G. Campana, and G.L. Monti, A finned-riser design to avoid the capillarity effect in multi-jet fusion technology. Rapid Prototyping Journal, 2020. 27(1): p. 1-12.
    22. Liu, X., et al., Enhancing the mechanical strength of Multi Jet Fusion–printed polyamide 12 and its glass fiber-reinforced composite via high-temperature annealing. Additive Manufacturing, 2021. 46.
    23. Bhat, C., A. Kumar, and J.-Y. Jeng, Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures. Additive Manufacturing, 2021. 47.
    24. Osswald, P.V., et al., Failure criterion for PA 12 multi-jet fusion additive manufactured parts. Additive Manufacturing, 2021. 37.
    25. O’Connor, H.J., A.N. Dickson, and D.P. Dowling, Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing, 2018. 22: p. 381-387.
    26. Calignano, F., F. Giuffrida, and M. Galati, Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering. Journal of Manufacturing Processes, 2021. 65: p. 271-282.
    27. Morales-Planas, S., et al., Multi Jet Fusion PA12 Manufacturing Parameters for Watertightness, Strength and Tolerances. Materials (Basel), 2018. 11(8).
    28. Abbott, C.S., M. Sperry, and N.B. Crane, Relationships between porosity and mechanical properties of polyamide 12 parts produced using the laser sintering and multi-jet fusion powder bed fusion processes. Journal of Manufacturing Processes, 2021. 70: p. 55-66.
    29. Puttonen, T., M. Salmi, and J. Partanen, Mechanical properties and fracture characterization of additive manufacturing polyamide 12 after accelerated weathering. Polymer Testing, 2021. 104.
    30. Xu, Z., et al., The process and performance comparison of polyamide 12 manufactured by multi jet fusion and selective laser sintering. Journal of Manufacturing Processes, 2019. 47: p. 419-426.
    31. Mele, M., et al., Investigation into effects of cooling rate on properties of polyamide 12 parts in the multi jet fusion process. Rapid Prototyping Journal, 2020. 26(10): p. 1789-1795.
    32. HP Development Company, L.P., ,, HP 3D High Reusability PA 12 Strong, lowest cost, quality parts. 2017.
    33. HP Development Company, L.P., ,, HP 3D HR PA 12 for the HP Jet Fusion 4200 3D Printing Solution Mechanical Properties. 2021.
    34. American Society for Testing and Materials, ASTM D638-14 Standard Test Method for Tensile Properties of Plastics. 2014.
    35. American Society for Testing and materials, ASTM D256-10(2018) Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. 2018.
    36. American Society for Testing and Materials, ASTM D792-20 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. 2020.
    37. American Society for Testing and Materials, ISO/ASTM 52921:2013 (Reapproved 2019)(E) Standard Terminology for Additive Manufacturing—Coordinate Systems and Test Methodologies. 2019.
    38. 台灣大學化工系, 雷射粒徑分析儀 Coulter LS230. 2016.
    39. HP Development Company, L.P., ,, HP 3D HR PA 12 for the HP Jet Fusion 4200 3D Printing Solution Dimensional Capability. 2020.
    40. Launhardt, M., et al., Detecting surface roughness on SLS parts with various measuring techniques. Polymer Testing, 2016. 53: p. 217-226.
    41. 陳亮嘉, 表面粗糙度及其量測. 2012.
    42. Sagbas, B., et al., Impact of print bed build location on the dimensional accuracy and surface quality of parts printed by multi jet fusion. Journal of Manufacturing Processes, 2021. 70: p. 290-299.
    43. Cai, C., et al., Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. Journal of Materials Processing Technology, 2021. 288.
    44. Gogolewski, S., K. Czerniawska, and M. Gasiorek, Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam). Colloid and Polymer Science volume, 1980. 258(October 1980): p. 1130-1136.

    無法下載圖示 全文公開日期 2032/06/30 (校內網路)
    全文公開日期 2032/06/30 (校外網路)
    全文公開日期 2032/06/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE