簡易檢索 / 詳目顯示

研究生: 張育誠
Yu-Cheng Chang
論文名稱: 連續熱損顆粒材之破裂韌度與拉力強度及其聲光破壞演化
Fracture Toughness & Tensile Strength under Continuous Heat-induced Damage of Granular Material with Acoustic-optic Examination
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 壽克堅
Keh-Jian Shou
陳志南
Chee-Nan Chen
陳立憲
Chen Li Hsien
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 175
中文關鍵詞: 顆粒材大小溫度效應半圓盤破任韌度試驗間接拉力試驗波速聲射法(AE)電子斑紋干涉術(ESPI)
外文關鍵詞: Grain Size, Temperature Effect, B.Z., SCB, Velocity of Wave, AE, ESPI
相關次數: 點閱:210下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統溫度對材料影響之力學研究,係將試體放入高溫爐中加溫至預設溫度,僅能得到單一溫度影響之巨觀破壞參數為主要探討對象。本研究透過連續性高溫試體準備方式,獲得連續性材料破壞分佈後,進行間接拉力與破壞韌度試驗,並耦合同步化聲射法(Acoustic Emission, AE)、電子斑紋干涉術(Electronic Speckle Pattern Interferometry, ESPI)二種非破壞性檢測技術,探尋材料於試驗下之完整加載歷程與巨、微觀破壞行為關係。
    藉由改變顆粒材大小(D50=1.0、0.2mm)、不同連續溫度區間為變數,進行系列之半圓盤破裂韌度與間接拉力試驗之完整加載歷程;AE訊號與破壞演化特徵之關聯性探討,並同步ESPI比對,為本研究主軸。
    由人造類岩之水泥砂漿之破壞行為顯示,巨觀方面之溫度效應作用下,水泥基質材料受溫度作用後會產生不同之物理及化學變化,溫度作用於200℃後,試體內部C-S-H膠體,會變成C-S+H2O,試體內部開始產生孔隙。溫度達500℃時,Ca(OH)2變成CaO+H2O和水泥體積產生0.5%膨脹量。試體內部之石英砂,於573℃時,會產生相變化,則產生0.4%體積膨脹量,致使石英結構粉碎,KIC與間接拉強度隨溫度增加而遞減,材料臨界破壞溫度450~500℃之間。
    微觀檢測結果顯示,AE事件數之多寡則受顆粒材大小與溫度作用影響甚鉅,AE事件數隨著溫度增加有遞減之趨勢。利用非破壞性檢測技術ESPI求算破裂韌度與破壞性半圓盤破裂韌度試驗,兩者結果相當接近,證實此光學位移法知適確性。


    The material mechanic research of traditional temperature which put the specimen into high temperature furnace and heat it to the preset temperature can only obtain single temperature effect of the macroscopic fracture mechanism. This research obtain the continuity material damage distribution through continued heat treatment, and to do the BZ test and SCB test, also build to couple two nondestructive techniques: AE(acoustic emission) and ESPI (electronic speckle pattern interferometry), to find out the complete loading history and the damage relationship between macroscopic and microscopic of the material.
    The research also do the B.Z. test and SCB test by using different grain size and different ranges of temperature as variables.
    If the components in the material are subjected to heat treatment, the components will reveal different chemical and physical changes. For example, the cements around 200℃, the C-S-H becomes C-S+H2O. The temperature elevated up around 500℃,the Ca(OH)2 becomes CaO+H2O and the volume of cement material decreases 0.5%. For siliceous aggregate, the quartz is main component , it is changed from  to  phase around 500℃and the volume of quartz increases 0.4%.
    The increase of temperature caused KIC and tensile strength to decrease, the material fracture made the critical temperature to be around 450 to 500 ℃.
    According to microscopic test result, the grain size and temperature affect AE event very much. AE event decrease while temperature increase. The research got the similar result by using ESPI and SCB test to calculate KIC. Therefore, the research also confirm the feasibility of this method.

    The material mechanic research of traditional temperature which put the specimen into high temperature furnace and heat it to the preset temperature can only obtain single temperature effect of the macroscopic fracture mechanism. This research obtain the continuity material damage distribution through continued heat treatment, and to do the BZ test and SCB test, also build to couple two nondestructive techniques: AE(acoustic emission) and ESPI (electronic speckle pattern interferometry), to find out the complete loading history and the damage relationship between macroscopic and microscopic of the material. The research also do the B.Z. test and SCB test by using different grain size and different ranges of temperature as variables. If the components in the material are subjected to heat treatment, the components will reveal different chemical and physical changes. For example, the cements around 200℃, the C-S-H becomes C-S+H2O. The temperature elevated up around 500℃,the Ca(OH)2 becomes CaO+H2O and the volume of cement material decreases 0.5%. For siliceous aggregate, the quartz is main component , it is changed from  to  phase around 500℃and the volume of quartz increases 0.4%. The increase of temperature caused KIC and tensile strength to decrease, the material fracture made the critical temperature to be around 450 to 500 ℃. According to microscopic test result, the grain size and temperature affect AE event very much. AE event decrease while temperature increase. The research got the similar result by using ESPI and SCB test to calculate KIC. Therefore, the research also confirm the feasibility of this method.

    [1]陳培源,「陶瓷原料之礦物鑑定技術」,陶業季刊第十卷第二期,pp.62~84,(1991)
    [2]王貽德,「脆性岩石及高性能混凝土完整應力-應變之研究」,碩士論文,國立台灣工業技術學院,台北,(1995)。
    [3]李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程系,台南,(2003)。
    [4]蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試體之探討」,碩士論文,國立台灣科技大學營建工程系,台北,(2005)。
    [5]李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北,(2006)。
    [6]胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北,(2007)。
    [7]劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,(2007)。
    [8]劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」, 碩士論文,國立台灣科技大學營建工程系,台北,(2008)。
    [9]巫奇穎,「同步化聲光非破壞檢測研探類岩材料於貫切破壞之群刀效應」,碩士論文,國立台北科技大學土木與防災研究所,台北,(2009)。
    [10]彭國維,「以聲射技術研探類岩粒徑大小與形狀於壓、剪過程破壞特徵」,碩士論文,國立台灣科技大學營建工程系,台北,(2010)。
    [11]徐紳翔,「應用非破壞聲射法於岩材受斜向剪切試驗之破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北,(2011)。
    [12]李翊銓,「同步化非破壞檢測於彎矩試驗下細化水泥砂漿之力學行為」,碩士論文,國立台灣科技大學營建工程系,台北,(2012)。
    [13]鄭華鋒,「圓盤厚徑比對岩石劈裂抗拉強度影響的試驗研究」,岩石力學與工程學報第三十一卷第四期,(2012)
    [14]ASTM E610-82, Standard Definitions of Terms Relating to Acoustic Emission, Annual book of ASTM standards, American Society for Testing and Materials, (1999).
    [15]ASTM E976-84, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, Annual book of ASTM standards, American Society for Testing and Materials (2000)
    [16]Bieniawski, Z.T., “Mechanism of Brittle Fracture of Rock,” Int. J. Rock Mech. Min. Sci.& Geomech.Abstr., Vol.4, pp.395-430 (1967).
    [17]Butters, J.N. and Leendertz, J.A., “Holographic and Video Techniques Applied to Engineering Measurements,” Transactions of the Institute of Measurement and Control, Vol. 4 pp. 349-354 (1971).
    [18]Bazant, Z.P., and Pfeiffer, P.A., “Tests on shear fracture and strain-softening in concrete,” Proc. 2nd Symp. on The Ineraction of Non-nuclear Muntitions with Structures, Florida.(1985)
    [19]Ballatore, E., Carpinteri, A., Ferrara, G., and Melchiorri, G., “Mixed-mode fracture energy of concrete,” Engng. Fract. Mech. Vol. 35, pp.145-157.(1990)
    [20]Berthelot, J.M., “Frequency Analysis of Acoustic Emission Signals in Concrete,” Journal of Acoustic Emission, Vol. 11, pp. 11-18. (1993).
    [21]Biolzi, L., Pedala, S. and Labuz, J. F., “Mechanical Characterization of Natural Building Stone," Degradation of Natural Building Stone, Geotechnical Special Publication, ASCE, No. 72, pp. 33-41. (1999).
    [22]Chen, L.H., “Failure of Rock Under Normal Wedge Indentation,” Ph. D. Thesis, Department of Civil & Mineral Engineering, University of Minnesota (2001).
    [23]D.J. Smith, M.R. Ayatollahi, M.J. Pavier, “The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading,” Fatigue Fract Engng Mater Struct, , Vol. 24, pp. 137-150 (2001).
    [24]Griffith, A.A., “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society, Vol. 221, pp. 163-197 (1921).
    [25]Gabor, D., “A New Microscopic Principle,” Nature, Vol. 161, pp. 777-778 (1948).
    [26]Gordon, & Chu, P.K. “Microstructure of Complex Ceramics,” Proceedings of the Third Berkeley International Materials Conference, Vol.6, pp. 828-861. (1966).
    [27]Gao, H., Wang, Z., Yang, C., and Zhou, A., Acta Metall. Sinica 15, pp.380-391.(1979)
    [28]Hondros, G.., “The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete,” Australia Journal of Applied Science, 10, pp. 243-268 (1959).
    [29]Hawkes, I. and Mellor, M., “Uniaxial testing in rock mechanics laboratories,” Engineering Geology, 4, pp. 177-285 (1970).
    [30]Heuze F.E. , “High-temperature Mechanical, Physical and Thermal Properties of Grain Rock-A Review,”Int. J. Rock Mech. Min. Sci.& Geomech., Vol.20, No.1, pp.3-10, (1983).
    [31]ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15, pp. 99-103 (1978).
    [32]ISRM, “Suggested Methods for determining the Fracture Toughness testing of rock ,” Ouchterlony F. (Editor), Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 25, pp.71-96 (1988).
    [33]James, D.L., “Acoustic Emission Investigation into Some Concrete Construction Problems,” Journal of Acoustic Emission, Vol. 8, No.1-2, pp. 322-325, (1989).
    [34]Kaiser, J., An Investigation into the Occurrence of Noise in Tensile Tests or A Study of Acoustic Phenomena in Tensile Tests, Technische Hochschule, (1950).
    [35]Leith, E.N. and Upatnieks, J. “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America, Vol. 52, pp. 1123-1130, (1962).
    [36]Landis, C., “Automated Determination of First P-wave Arrival and Acoustic Emission Source Location,” Journal of Acoustic Emission, Vol. 10, No.1-2, pp. 97-103 (1992).
    [37]Lim, I.L., Johnston, I.W., Choi, S.K., and Boland, J. N., “Fracture toughness testing of a soft rock with semi-circular specimens under three-point bending,” Part 1-Mode I. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., In press.(1994)
    [38]Moore, A. J. and Tyrer, J. R., “An Electronic Speckle Pattern Interferometry for Complete In-plane Displacement Measurement," Measurement Science and Technology, Vol. 1, pp. 1024-1030 (1982).
    [39]Maji, A.K. and Wang, J.L. and Lovato, J., “Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing,” Experimental Techniques, Vol. 15, pp. 19-23 (1991).
    [40]Maji, A.K., “Acoustic Emissions from Reinforced Concrete,” Experimental Techniques, Vol. 34, pp. 379-388 (1994)
    [41]M. R. Ayatollahi and M. R. M. Aliha, “Wide Range Data for Crack Tip Parameters in Two Disc-type Specimens Under Mixed Mode Loading,” Computational Materials Science, Vol. 38, pp.660-670 (2007).
    [42]M. R. Ayatollahi and M. R. M. Aliha, “On The Use of Brazilian Disc Specimen for Calculating Mixed Mode I-II Fracture Toughness of Rock Materials,” Engineering Fracture Mechanics, Vol. 75, pp.4631-4641 (2008).
    [43]M. R. Ayatollahi and M. R. M. Aliha, “An Improved Semi-circular Bend Specimen for Investigating mixed Mode Brittle Fracture,” Engineering Fracture Mechanics, Vol. 78, pp.110-123 (20011).
    [44]M. R. Ayatollahi and M. R. M. Aliha, “Mixed Mode I/II Brittle Fracture Evaluation of Marble Using SCB Specimen ,” Engineering Fracture Mechanics, Vol. 78, pp.110-123 (20011).
    [45]Ohtsu, M., “Acoustic Emission Characteristics of Concrete and Fundamental Mechanics,” Ph. D. Thesis, Kyoto University (1982).
    [46]Schmidt RA. A microcrack model and its significance to hydraulic fracturing and fracture toughness testing In: Proceedings of 21st US symposium rock mechanics, pp. 581–590 (1980).
    [47]Vutukuri V. S., Lama R. D. and Saluja, S. S., “Handbook on mechanical properties of rocks - Volume I,” Trans Tech Publications, (1974).

    QR CODE