簡易檢索 / 詳目顯示

研究生: 何辰彥
Chen-Yen Ho
論文名稱: 化學熱浸式後處理製程應用於高速積層製造聚合物粉末列印件
Chemical Hot-Dipping Post-Processing on High Speed Additive Manufacturing using Powder based Polymer Material
指導教授: 鄭正元
Jeng-Ywan Jeng
林上智
Shang-Chih Lin
口試委員: 謝志華
Zhi-Hua Xie
陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 化學熱浸式處理超音波震盪多噴嘴燒熔技術浸染法積層製造PA12DMAC
外文關鍵詞: Chemical hot dipping treatment, Ultrasonic vibration, Multi-jet fusion, DMAC
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為結合化學熱浸式處理與不同攪拌方式對高速積層製造之多噴嘴燒熔技術進行後處理製程之研究,以PA12粉末材料列印後處理試片,探討在經過磁石攪拌處理與超音波震盪處理後其機械性質與表面粗糙度之變化,以及經處理前、後試片對於色彩附著度的比較。
    本研究方法是先利用漢森溶解度參數尋找與PA12溶解度相符之化學溶劑二甲基乙醯胺(Dimethylacetamide, DMAC),進行分析以確定此溶劑與PA12列印件之起始反應溫度,並以此溫度作為區間進行化學熱浸式處理溫度與時間參數之研究,以化學溶劑中之強氫鍵與列印件表面反應形成液態溶劑薄膜,使其達到表面平滑並改善表面粗糙度之效果,並探討其機械性質之變化;再對PA12列印件在磁石攪拌與超音波震盪兩種不同攪拌方式下進行化學熱浸式處理,以探討試片表面處理均勻度與形貌尺寸變化的穩定性;接著將未處理和經化學熱浸式處理之PA12試片進行浸染法與噴漆法染色,並使用百格試驗比較兩種上色方法對於有無化學熱浸式處理之試片的色彩附著度。
    研究結果發現PA12列印件經過化學熱浸式處理後成功改善其表面粗糙度與拉伸應變,可證實化學熱浸式處理對表面粗糙度與機械性質都能獲得相當的改善,並且藉由此有效處理溫度與時間進行磁石攪拌與超音波震盪化學熱浸式處理;在不同攪拌方式處理之結果中,超音波震盪處理表面粗糙度最多能降低至0.54µm改善96.0%,有效平滑PA12列印件表面,並且能成功地控制不穩定的尺寸變化;在處理前、後試片色彩附著度之結果中,浸染法對於化學熱浸式處理之PA12試片能成功上色,並且能保留經處理後改善的表面粗糙度值。綜合以上結果可以證明本研究所開發之後處理製程結合超音波震盪能有效改善化學蒸氣處理所面臨的腔體對流不足、變形劇烈和處理時間較長的問題,同時也能達到市場對於色彩美觀的需求度,可望在未來開發此後處理製程之商用設備,以提高PA12列印件後處理之品質與效率。


    This research is a post-treatment process of the multi-jet fusion technology for high-speed additive manufacturing by combining chemical hot-dipping treatment and different stirring methods. The material of the post-treatment samples are printed with PA12 powder, and the changes of mechanical properties and surface roughness after magnet stirring treatment and ultrasonic vibration treatment, and the comparison of color adhesion of samples before and after treatment were discussed.
    This research method is to first use the Hansen solubility parameter to find the chemical solvent DMAC that is consistent with the solubility of PA12. And analyze to determine the initial reaction temperature of the solvent and PA12 prints, and this temperature was used as an interval to research the temperature and time parameters of chemical hot-dipping treatment. Use the strong hydrogen bond in chemical solvent to react with the surface of the printed part to form a liquid solvent film to improve the surface roughness, and to explore the change of its mechanical properties. Then, the PA12 prints were subjected to chemical hot-dipped treatment under two different stirring methods: magnet stirring and ultrasonic vibration. And discussing the stability of the surface treatment uniformity and the dimensional change of the samples. Then, the untreated and chemically hot-dipping treated PA12 samples were colored by dip dyeing and spray painting. And use the cross-cut tape test to compare the color adhesion of the two coloring methods to the samples with or without chemical hot-dipping treatment.
    The results of the research found that the surface roughness and tensile strain of PA12 printed parts were successfully improved by chemical hot-dipping treatment. It can be proved that the chemical hot-dipping treatment can achieve considerable improvement in the surface roughness and mechanical properties, and the effective temperature and time is used for magnetic stirring and ultrasonic vibration treatment; In the results of different stirring methods, the surface roughness of ultrasonic vibration treatment can be reduced to 0.54µm at most and improved by 96.0%, effectively smoothing the surface of the printed part, and can successfully control unstable dimensional changes; In the results of color adhesion of samples before and after treatment, the dip dyeing method can successfully color the PA12 samples treated by chemical hot dipping treatment, and can retain the improved surface roughness value after treatment. Based on the above results, it can be proved that the post-treatment process developed by this research combined with ultrasonic vibration can effectively improve the problems faced by PA12 printed parts, at the same time, it can also meet the market demand for beautiful colors. It is expected that commercial equipment for the chemical hot dipping treatment will be developed in the future to improve the quality and efficiency of the post-treatment of PA12 prints.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 XII 表目錄 XVI 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章、文獻回顧 4 2.1 積層製造 4 2.1.1快速燒結技術(High Speed Sintering, HSS) 4 2.1.2多噴嘴燒熔技術(Mutli Jet Fusion, MJF) 7 2.2 積層製造塑膠材料後處理技術 8 2.2.1塑膠材料後處理 8 2.2.2化學蒸氣處理 11 2.2.3化學浴處理 12 2.3 漢森溶解度參數(Hansen Solubility Parameters, HSP) 14 2.4 積層製造染色技術 15 2.4.1 3D彩色列印技術 15 2.4.2後處理上色之方法 17 2.4.3色彩物性測定之方法 18 第三章、材料選用與實驗設備 22 3.1 材料選用 22 3.1.1 PA12 22 3.1.2 二甲基乙醯胺(Dimethylacetamide, DMAC) 23 3.2實驗設備 25 3.2.1 HP Jet Fusion 4200 25 3.2.2 電磁加熱板 26 3.2.3 超音波震盪機 27 3.3測量儀器 28 3.3.1萬能試驗機 28 3.3.2邵氏硬度計 29 3.3.3表面粗糙度量測系統 30 3.3.4熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 31 3.3.5百格試驗組 32 第四章、研究方法與流程規劃 33 4.1化學熱浸式處理實驗規劃 33 4.1.1差示掃描量熱法(Differential scanning calorimetry, DSC) 34 4.1.2化學熱浸式之前導實驗架構 35 4.1.3前導實驗結果 36 4.1.4實驗流程 37 4.1.5試驗方法 40 4.2不同攪拌方式對表面形貌比較實驗規劃 40 4.2.1磁石攪拌式與超音波震盪式 41 4.2.2實驗流程 43 4.3.3試驗方法 46 4.3染色試片色彩附著度比較實驗規劃 47 4.3.1浸染法與噴漆法 48 4.3.2實驗流程 50 4.3.3試驗方法 51 第五章、實驗結果與討論 54 5.1化學熱浸式處理結果 54 5.1.1化學熱浸式處理表面情形 54 5.1.2熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 61 5.1.3表面粗糙度 68 5.1.4試片尺寸量測 69 5.1.5拉伸試驗 70 5.1.5硬度試驗 72 5.2不同攪拌機制對表面形貌比較結果 73 5.2.1不同攪拌方式處理表面情形 73 5.2.2熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 78 5.2.3表面粗糙度 81 5.2.4試片尺寸量測 83 5.2.5化學熱浸式與化學蒸氣處理比較結果 85 5.3處理試片染色色彩附著度比較結果 88 5.3.1處理試片表面染色情形 88 5.3.2表面粗糙度 90 5.3.3百格試驗結果 91 第六章、結論與未來展望 94 6.1結論 94 6.2未來展望 96 參考文獻 97

    [1] 錢啟文, “高速積層製造聚合物粉末列印件之後處理製程研究,” 2021.
    [2] Neil Hopkinson & Poonjolai Erasenthiran, “High Speed Sintering-Early Research into a New Rapid Manufacturing Process,” 2004.
    [3] H. R.Thomas, N.Hopkinson, andP.Erasenthiran, “High speed sintering - Continuing research into a new rapid manufacturing process,” 2006.
    [4] P.Hewlett, “HP Multi Jet Fusion technology,” 2018.
    [5] L.Gregurić, “10 Methods for 3D Printing Post-Processing,” 2022.
    [6] Martin, “Guide to Post-Processing and Finishing SLA Resin 3D Prints,” 2019.
    [7] I.Johansson, “Post-processing for roughness reduction of additive manufactured polyamide 12 using a fully automated chemical vapor technique,” 2020.
    [8] P. P.Technologies, “WHITE PAPER Redefining PolyJet Support Removal with Automation”.
    [9] P. P.Technologies, “Eliminating Manual Surface Finishing For Multi Jet Fusion (MJF) 3D Printed Solutions”.
    [10] BrittLiv, “How to Smooth PLA 3D Prints,” 2019.
    [11] Jakub Kočí, “Improve your 3D prints with chemical smoothing,” 2020.
    [12] N. B.Crane, Q.Ni, A.Ellis, andN.Hopkinson, “Impact of chemical finishing on laser-sintered nylon 12 materials,” vol. 13, pp. 149–155, 2017.
    [13] L. M.Galantucci, F.Lavecchia, andG.Percoco, “Experimental study aiming to enhance the surface finish of fused deposition modeled parts,” vol. 58, no. 1, pp. 189–192, 2009.
    [14] S.Sato, D.Gondo, T.Wada, S.Kanehashi, andK.Nagai, “Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film,” vol. 129, no. 3, pp. 1607–1617, 2013.
    [15] F.Gharagheizi, M.Sattari, andM. T.Angaji, “Effect of calculation method on values of Hansen solubility parameters of polymers,” vol. 57, no. 3, pp. 377–384, 2006.
    [16] P.Dudek, “FDM 3D printing technology in manufacturing composite elements,” 2013.
    [17] S. F. S.Shirazi et al., “A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing,” 2015.
    [18] J. P.Yuan andG. X.Chen, “Speedup Method for Paper-Based 3D Color Printing Based on STL File,” 2015.
    [19] G.Chen, C.Chen, Z.Yu, H.Yin, L.He, andJ.Yuan, “Color 3D Printing: Theory, Method, and Application,” 2016.
    [20] Y. G.Im, S. I.Chung, J. H.Son, Y. D.Jung, J. G.Jo, andH. D.Jeong, “Functional prototype development: Inner visible multi-color prototype fabrication process using stereo lithography,” 2002.
    [21] R.Udroiu andI. C.Braga, “Polyjet technology applications for rapid tooling,” 2017.
    [22] 3D Systems, “ProJet x60Pro Series 3D Printers User Guide,” 2013.
    [23] Hewlett Packard, “HP Jet Fusion 580 Color 3D Printer Product Documentation User Guide,” 2019.
    [24] Martin, “Guide to Color 3D Printers,” 2019.
    [25] J. R. V.Sai Kiran andS.Prabhu, “Robot Nano Spray Painting - A Review,” 2020.
    [26] 全華精密 Chuanhua Precision, “耐磨試驗機 Taber 1700/1750 -.”
    [27] 科協儀器股份有限公司, “百格刮刀組 BYK-Gardner.”
    [28] H. D.Company, “HP 3D High Reusability PA12,” 2019.
    [29] C. M.Hansen, Hansen solubility parameters: A user’s handbook: Second edition. 2007.
    [30] 成太化工, “物質安全資料表,” 2005.
    [31] H. D.Company, “HP Jet Fusion 4200 3D Printing Solution,” pp. 1–12, 2020.
    [32] 藍偉誌 姚聖恩 鄭博任 余志成, “攪拌方式與蝕刻幾何特徵對 KOH 矽蝕刻蝕刻速率及表面粗糙度的影響,” 2004.
    [33] C.Coatings, R. C.Products, E.Applica-, S.Tape, T.Paint, andR.Materials, “Standard Test Methods for Measuring Adhesion by Tape Test,” pp. 1–8, 2012.
    [34] A.Touris et al., “Effect of molecular weight and hydration on the tensile properties of polyamide 12,” 2020.

    無法下載圖示 全文公開日期 2027/07/25 (校內網路)
    全文公開日期 2027/07/25 (校外網路)
    全文公開日期 2027/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE