簡易檢索 / 詳目顯示

研究生: 吳宗翰
Zong-Han Wu
論文名稱: 實例分割方法於機械手臂夾取物體之三維點雲資料的方位偵測應用
The Localization of The Object 3D Point Cloud Data for Manipulator Grasping by Using The Instance Segmentation Method
指導教授: 黃緒哲
Shiuh-Jer Huang
林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 實例分割三維點雲資料模糊滑動模式控制主成份分析圖形使用者介面
外文關鍵詞: instance segmentation, 3D point cloud data, FSMC, principal component analysis, graphical user interface
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究整合機械手臂的FPGA控制系統和PC-Based的視覺系統與圖形使用者介面,利用實例分割的方法對物體的三維點雲資料進行方位偵測,再回傳給FPGA控制系統,來完成視覺引導機械手臂夾取物體的目標。
    視覺系統是利用RGB-D深度相機擷取彩色與深度影像,使用實例分割的方法對彩色影像中物體進行偵測與分割,另外利用數據增強對數據集進行擴增,同時提升mAP性能。將實例分割得到的資訊,結合深度影像資訊,轉換成物體的三維點雲資料(Point cloud data),先計算其三維質心座標為夾取目標點,再對其進行主成份分析(PCA),然後利用前面兩個的結果來估測物體的輪廓點,再經過換算獲得夾爪旋轉角度,透過座標轉換將質心座標轉換到機械手臂基底座標,最後透過RS-232串列通訊,將夾取所需的方位資訊傳送給FPGA控制系統,整體操作利用圖形使用者介面將上述功能整合起來。
    機械手臂則是以 ALTERA Nios II Embedded Development Kit(以下簡稱 Nios II 開發板)為核心,控制五軸機械手臂之運動,在 Nios II 發展板中以數位硬體電路實現訊號輸入與輸出之功能,數位控制訊號由 Nios II 發展板送至自製直流馬達驅動電路以驅動馬達。數位電路中包括五組光學編碼器偵測、四倍頻寬解碼電路、極限開關訊號偵測、五組脈波寬度調變訊號輸出、RS232通訊。軟體部分則是在 Nios II 整合開發環境介面,編寫正、反運動學、模糊滑動控制法則等應用。


    This research platform integrates the FPGA control system of the robotic manipulator and the PC-Based vision system and graphical user interface. The method of instance segmentation is used to detect the location of the object's 3D point cloud data. Those object 3D position is sent to FPGA control system of robotic manipulator for establishing the vision guided object detection and grasping task.
    The RGB-D depth camera of the vision system is used to capture color and depth images, the instance segmentation method is adopted to detect and segment objects in the color image, and the data enhancement scheme is employed to augment the dataset and improve the mAP. The information obtained by the instance segmentation is combined with the depth image information to construct the three-dimensional point cloud data of the object, Based on the principal component analysis and centroid calculation,and the self-developed estimation algorithm, the 3D center of mass coordinates and the rotation angle of the gripper can be derived. Then , these center of mass coordinates are converted to the base coordinated of the robotic manipulator, and sent the localization to the FPGA control system through RS-232, A graphical user interface was designed to integrate the above functions on operation interface.
    The Altera FPGA was chosen as the robotic manipulator control kernel. Its main function is to receive the position and posture data from PC and monitor the robotic arm motion. The Nios II development board uses digital hardware circuits to implement signal acquisition and output control function, including decoder, filter, PWM, RS232. Kinematics, inverse kinematics, and FSMC control law were written as software program in Nios II.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文架構 4 第二章 系統架構 5 2.1視覺系統 6 2.1.1 個人電腦 6 2.1.2 影像擷取系統 7 2.2 機械手臂系統架構 8 2.2.1 Nios II發展板 10 2.2.2 馬達驅動電路 12 2.2.3 脈波寬度調變電路 15 2.2.4 五軸機械手臂 16 2.2.5個人電腦 17 2.2.6 NIOS II微處理器之規劃 19 2.2.7 電動夾爪 22 第三章 機械手臂運動系統 23 3.1連桿參數與座標(Link Parameters and Coordinate) 23 3.2機械手臂運動學分析 25 3.2.1正向運動學推導 27 3.3 機械手臂逆向運動學 30 3.3.1逆向運動學推導 30 第四章 影像辨識系統 32 4.1 Mask R-CNN介紹 32 4.2 Mask R-CNN架構 33 4.2.1 特徵金字塔(FPN) 34 4.2.2 ROI Align 34 4.2.3全卷積網路(FCN) 35 4.2.4 損失函數(Loss Function) 36 4.3數據集的介紹與準備 37 4.3.1 資料標註與格式 37 4.3.2 數據增強(Data Augmentation) 38 4.3.3 數據集配置 38 4.4 MaskR-CNN模型的訓練結果 40 第五章 立體視覺系統與圖形使用者介面 41 5.1 獲取像素對齊的彩色與深度影像 41 5.2 介紹點雲資料與產生流程 42 5.3 從三維點雲資料獲取夾取點與夾爪旋轉角度 45 5.3.1計算目標物體的夾取點 45 5.3.2主成份分析(Principal components analysis , PCA) 46 5.3.3 主成份分析(PCA)於本研究的應用 47 5.3.4 估測目標物體的輪廓點 49 5.3.5 計算夾爪旋轉角度 53 5.4 座標空間轉換 54 5.5 圖形使用者介面(GUI)與操作流程 57 第六章 機械手臂控制理論及夾取策略 59 6.1 模糊滑動模式控制 59 6.2 機械手臂夾取策略 64 第七章 實驗結果與討論 65 7.1 實驗一 : 立體影像誤差分析 66 7.2 實驗二 : 實例分割與數據增強 69 7.3 實驗三 : 三維位置控制 74 7.4 實驗四 : 座標轉換誤差分析 77 7.5 實驗五 : 整體實驗結果 78 第八章 結論與未來展望 82 8.1 結論 82 8.2 未來展望 83 參考文獻 84

    參考文獻 :
    【1】 Du, Guoguang & Wang, Kai & Lian, Shiguo & Zhao, Kaiyong. (2021). Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artificial Intelligence Review.
    【2】 Bergamini, L., Sposato, M., Pellicciari, M., Peruzzini, M., Calderara, S., & Schmidt, J. (2020). Deep learning-based method for vision-guided robotic grasping of unknown objects. Advanced Engineering Informatics, 44, 101052.
    【3】 C. Yuan, X. Yu and Z. Luo, "3D point cloud matching based on principal component analysis and iterative closest point algorithm," 2016 International Conference on Audio, Language and Image Processing (ICALIP),pp. 404-408, Shanghai, China , 2016.
    【4】 Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu and M. Bennamoun, "Deep Learning for 3D Point Clouds: A Survey," in IEEE Transactions on Pattern Analysis and Machine Intelligence,2020.
    【5】 Caldera, S.; Rassau, A.; Chai, D. Review of Deep Learning Methods in Robotic Grasp Detection. Multimodal Technol. Interact. 2018, 2, 57.
    【6】 S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, June 1 2017
    【7】 J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788, Las Vegas, NV, USA ,2016.
    【8】 J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018
    【9】 K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 1 Feb. 2020.
    【10】 T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature Pyramid Networks for Object Detection," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936-944
    【11】 J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440
    【12】 S. Kim and K. Yoon, "Point density-invariant 3D object detection and pose estimation," 2017 IEEE International Conference on Image Processing (ICIP), pp. 2647-2651, Beijing, China, 2017.
    【13】 Qujiang Lei, Guangming Chen, and Martijn Wisse , "Fast grasping of unknown objects using principal component analysis", AIP Advances 7, 095126, 2017
    【14】 Zapata-Impata, Brayan & Mateo, Carlos & Gil, Pablo & Pomares, Jorge. "Using Geometry to Detect Grasping Points on 3D Unknown Point Cloud", Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, 292-299, Madrid, Spain,2017.
    【15】 H. Shin, H. Hwang, H. Yoon and S. Lee, "Integration of deep learning-based object recognition and robot manipulator for grasping objects," 2019 16th International Conference on Ubiquitous Robots (UR), pp. 174-178, Jeju, Korea (South) , 2019.
    【16】 T. A. Nguyen and S. Lee, "3D Orientation and Object Classification from Partial Model Point Cloud based on PointNet," 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), pp. 192-197, Sophia Antipolis, France, 2018.
    【17】 C. -H. Wang and P. -C. Lin, "Q-PointNet: Intelligent Stacked-Objects Grasping Using a RGBD Sensor and a Dexterous Hand," 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 601-606, Boston, MA, USA, 2020.
    【18】 MITSUBISHI, “RV-M2 INSTRUCTION MANUAL,” MITSUBISHI Corporation, 1993.
    【19】 Retrieved July,15,2021,from https://www.intelrealsense.com/sdk-2/
    【20】 Retrieved July,15,2021,from https://pytorch.org/
    【21】 ALTERA, "DE2-115 User Manual, "ALTERA Corporation, 2010.
    【22】 TEXAS INSTRUMENTS, “LMD18200 3A, 55V H-Bridge,” TEXAS INSTRUMENTS Corporation, 2011.
    【23】 J. Denavit and R. S. Hartenberg, "A kinematic notation for lower pair mechanisms based on matrices, "Journal of Applied Mechanisms, 22, 215-221,1955
    【24】 巫憲欣, “以系統晶片發展具機器視覺之機械手臂運動控制,” 碩士論文, 國立臺灣科技大學機械工程系, 2006
    【25】 林柏諺,“具力回饋遠端操作機器人之研究,"碩士論文, 國立臺灣科技大學機械工程系, 2017
    【26】 Garcia-Garcia, A., Orts, S., Oprea, S., Villena-Martinez, V., & Rodríguez, J.G., "A Review on Deep Learning Techniques Applied to Semantic Segmentation". ArXiv, abs/1704.06857, 2017.
    【27】 Retrieved July,15,2021,from https://yuweichiu.github.io/%E4%BA%BA%E5%AD%B8%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92/p0011-Object-Detection-S9-Mask-R-CNN/
    【28】 Retrieved July,15,2021,from https://github.com/wkentaro/labelme
    【29】 Shorten, C., Khoshgoftaar, T.M. "A survey on Image Data Augmentation for Deep Learning. "Journal of Big Data 6(1) , July , 2019.
    【30】 P. Perera and V. M. Patel,"Learning Deep Features for One-Class Classification," in IEEE Transactions on Image Processing, vol. 28, no. 11, pp. 5450-5463, Nov. 2019.
    【31】 Retrieved July,15,2021,from https://cocodataset.org/#home
    【32】 Retrieved July,15,2021,from https://blog.csdn.net/weixin_42505877/article/details/106100721?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_title-4&spm=1001.2101.3001.4242
    【33】 Retrieved July,15,2021,from https://zh.wikipedia.org/wiki/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90
    【34】 Retrieved July,15,2021,from https://leemeng.tw/essence-of-principal-component-analysis.html
    【35】 Retrieved July,15,2021,from https://wenwender.wordpress.com/2019/05/20/pca%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90/
    【36】 Retrieved July,15,2021,from https://scikit-learn.org/stable/
    【37】 Retrieved July,15,2021,from https://blog.csdn.net/chelen_jak/article/details/80518973
    【38】 Eggert, D. W., Lorusso, A., & Fisher, R. B. (1997). "Estimating 3-D rigid body transformations: a comparison of four major algorithms". Machine vision and applications , 9(5), pp. 272-290,1997.
    【39】 Retrieved July,15,2021,from https://zh.wikipedia.org/wiki/PyQt
    【40】 J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.
    【41】 R. Palm, “Sliding Mode Fuzzy Control,” IEEE Fuzzy System Conf. San Diego, Canada, pp.519-526, March 1992.
    【42】 S. W. Kim and J. J. Lee, “Design of A Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, vol.71, pp.359-367, 1995.
    【43】 L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy System, vol. 1, no. 2, pp.146-155, May 1993.
    【44】 R. Palm, “Robust Control by Fuzzy Sliding Mode,” Automatica, vol. 30, no. 9, pp.1429-1437, Sept. 1994.
    【45】 S. C. Lin and Y. Y. Chen, “Design of Adaptive Fuzzy Sliding Mode Control for Nonlinear System Control,” IEEE Fuzzy Systems, Orlando, USA, vol. 1, pp.35-39, June 1994.

    無法下載圖示 全文公開日期 2024/07/28 (校內網路)
    全文公開日期 2026/07/28 (校外網路)
    全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE