簡易檢索 / 詳目顯示

研究生: 彭安娜
Ariana Tulus Purnomo
論文名稱: 使用 FMCW 雷達對 COVID-19 感染者 進行非接觸式呼吸模式監測和分類
Non-Contact Monitoring and Classification of Breathing Pattern with FMCW radar for the Supervision of People Infected by COVID-19
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 莊嶸騰
Rong-Terng Juang
林信標
Hsin-Piao Lin
曾昭雄
Chao-Hsiung Tseng
呂政修
Jenq-Shiou Leu
謝松年
Sung-Nien Hsieh
林丁丙
Ding-Bing Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 109
中文關鍵詞: COVID-19集成模型FMCW機器學習堆疊生命體徵
外文關鍵詞: COVID-19, ensemble model, FMCW, machine learning, stacking, vital signs
相關次數: 點閱:199下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • COVID-19 患者通常會發燒並呼吸困難。患有呼吸系統疾病的 COVID-19 患者在隔離期間需要醫療人員的密切關懷。非接觸式監測設備將是解決關懷 COVID-19 患者並降低病毒傳播風險的方案。本研究使用調頻連續波(FMCW)雷達和機器學習(ML)分別獲取呼吸資訊和分析呼吸信號。通過計算接收信號的到達角度(AoA)和利用FMCW雷達的多輸入多輸出(MIMO)系統可以同時檢測房間中的多個物件。
    COVID-19 患者通常會發燒並呼吸困難。患有呼吸系統疾病的 COVID-19 患者在隔離期間需要醫療人員的密切監督。非接觸式監測設備將是一個合適的解決方案,在監測 COVID-19 患者同時會降低病毒傳播風險。本研究使用調頻連續波(FMCW)雷達和機器學習(ML)分別獲取呼吸資訊和分析呼吸信號。通過計算接收信號的到達角度(AoA)和利用FMCW雷達的多輸入多輸出(MIMO)系統可以同時檢測房間中的多個物件。運用快速傅立葉轉換(FFT)和一些信號處理以獲得呼吸波形,透過機器學習協助系統自動分析呼吸信號。藉由機器學習可自動分辨五種呼吸訊號。這篇論文中,可分辨五種呼吸模式: 正常呼吸、深呼吸、深呼吸和快速呼吸、屏住呼吸和快速呼吸。本研究還比較了幾種ML演算法的性能,例如多類別邏輯回歸(MLR)、決策樹(DT)、隨機森林 (RF)、支持向量機(SVM)、極限梯度提升(XGB)、輕型梯度提升機(LGBM)、分類式梯度提升(CB)分類器、多層感知器(MLP)和三個提出的堆疊式集成模型,即堆疊式集成分類器(SEC)、基於提升樹堆疊式分類器(BTSC) 和 類神經堆疊式集成模型(NSEM)以獲得最好的機器學習模型。結果顯示,NSEM演算法以97.1 %的準確率達到最佳性能。在即時實現中,系統可以同時檢測多個具有不同呼吸特徵的物體, 並將呼吸信號分為五個不同的類別。


    A respiratory disorder that attacks COVID-19 patients requires intensive supervision of medical practitioners during the isolation period. A non-contact monitoring device will be a suitable solution for reducing the spread risk of the virus while monitoring the COVID-19 patient. This study uses Frequency-Modulated Continuous Wave (FMCW) radar and Machine Learning (ML) to obtain respiratory information and analyze respiratory signals, respectively. Multiple subjects in a room can be detected simultaneously by calculating the Angle of Arrival (AoA) of the received signal and utilizing the Multiple Input Multiple Output (MIMO) of FMCW radar. Fast Fourier Transform (FFT) and some signal processing are implemented to obtain a breathing waveform. ML helps the system to differentiate the five kinds of respiratory signals automatically. In this study, we address five different breathing patterns: normal breath, deep breath, deep and quick breath, holding breath and quick breath. This paper also compares the performance of several ML algorithms such as Multinomial Logistic Regression (MLR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), CatBoosting (CB) Classifier, Multilayer Perceptron (MLP), and three proposed stacked ensemble models, namely Stacked Ensemble Classifier (SEC), Boosting Tree-based Stacked Classifier (BTSC), and Neural Stacked Ensemble Model (NSEM) to obtain the best ML model. The results show that the NSEM algorithm achieves the best performance with 97.1% accuracy. In the real-time implementation, the system could simultaneously detect several objects with different breathing characteristics and classify the respiratory signals into five different classes.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 MIMO FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 MIMO FMCW Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Detect Vibrating Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Time Division Multiplexing (TDM) . . . . . . . . . . . . . . . . . . . . 15 2.5 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Differential Processing . . . . . . . . . . . . . . . . . . . . . . . 19 v 2.5.2 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . 19 3 Breathing Waveform Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 RANGE - Fast Fourier Transformation (FFT) . . . . . . . . . . . . . . . 22 3.2 Phase Extraction and Phase Unwrapping . . . . . . . . . . . . . . . . . . 24 3.3 Noise Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 2nd IIR Bi-quad BPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Breathing Waveform Classification using Staked Ensamble Learning . . . . . . 31 4.1 Machine Learning Module . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.2 Features Extraction (FE) . . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Classification Techniques . . . . . . . . . . . . . . . . . . . . . . 39 4.1.4 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . 44 4.1.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Experimental Result and Discussion . . . . . . . . . . . . . . . . . . . . 49 4.2.1 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Real-Time Measurement . . . . . . . . . . . . . . . . . . . . . . 57 5 Classifying Breathing Waveform with Unbalanced Dataset Problem . . . . . . 66 5.1 Machine Learning Module . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.1 Dataset Description and Format . . . . . . . . . . . . . . . . . . 66 5.1.2 Classifying Breathing Waveform . . . . . . . . . . . . . . . . . . 67 5.1.3 Data Preprocessing and Feature Extraction . . . . . . . . . . . . 67 vi 5.1.4 Machine Learning Algorithm . . . . . . . . . . . . . . . . . . . 68 5.1.5 Sampling Approach for Imbalance Data . . . . . . . . . . . . . . 68 5.1.6 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    [1] L. Pan, M. Mu, P. Yang, Y. Sun, R. Wang, J. Yan, P. Li, B. Hu, J. Wang, C. Hu, et al., “Clinical

    characteristics of covid-19 patients with digestive symptoms in hubei, china: a descriptive, cross-
    sectional, multicenter study,” The American journal of gastroenterology, vol. 115, 2020.

    [2] N. Poyiadji, G. Shahin, D. Noujaim, M. Stone, S. Patel, and B. Griffith, “Covid-19 associated acute
    hemorrhagic necrotizing encephalopathy: imaging features,” Radiology, vol. 296, no. 2, pp. E119–
    E120, 2020.
    [3] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, J. D. Munday, A. J.
    Kucharski, W. J. Edmunds, and F. Sun, “et al., ” feasibility of controlling covid-19 outbreaks by
    isolation of cases and contacts,”,” The Lancet Global Health, vol. 8, p. 4, 2020.
    [4] C. Massaroni, D. L. Presti, D. Formica, S. Silvestri, and E. Schena, “[non-contact monitoring of
    breathing pattern and respiratory rate via rgb signal measurement,” Sensors, vol. 19, p. 12, 2019.
    [5] J. Cai, W. Sun, J. Huang, M. Gamber, J. Wu, and G. He, “Indirect virus transmission in cluster of
    covid-19 cases, wenzhou, china, 2020,” Emerging infectious diseases, vol. 26, p. 6, 2020.
    [6] D. Dong, Z. Tang, S. Wang, H. Hui, L. Gong, Y. Lu, Z. Xue, H. Liao, F. Chen, and F. Yang, “et
    al., ” the role of imaging in the detection and management of covid-19: a review,”,” IEEE reviews in
    biomedical engineering, vol. 14, pp. 16–29, 2020.
    [7] P. Fonseca, X. Long, M. Radha, R. Haakma, R. Aarts, and J. Rolink, “Sleep stage classification with
    ecg and respiratory effort,” Physiological Measurement, vol. 36, p. 2027, 2015.
    [8] K. McClure, B. Erdreich, J. Bates, R. McGinnis, A. Masquelin, and S. Wshah, “Classification and
    detection of breathing patterns with wearable sensors and deep learning,” Sensors, vol. 20, p. 6481,
    2020.
    [9] Y. Wang, M. Hu, Q. Li, X. Zhang, G. Zhai, and N. Yao tech. rep., ArXiv, title = Abnormal respiratory
    patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an
    accurate and unobtrusive manner, type = Preprint, year = 2020, archivePrefix = arXiv, eprint =
    2002.05534.
    [10] S. Yoo, S. Ahmed, S. Kang, D. Hwang, J. Lee, J. Son, and S. Cho, “Radar recorded child vital sign

    public data set and deep learning-based age group classification framework for vehicular applica-
    tion,” Sensors, vol. 21, p. 2412, 2021.

    [11] J. Muhlsteff, J. Thijs, and R. Pinter, “The use of a two channel doppler radar sensor for the char- ̈
    acterization of heart motion phases,” in 2006 International Conference of the IEEE Engineering in
    Medicine and Biology Society,, pp. 547–550, 2006.
    76

    [12] H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu, “Noncontact physiological dynamics detection
    using low-power digital-if doppler radar,” IEEE Transactions on Instrumentation and Measurement,
    vol. 66, no. 7, pp. 1780–1788, 2017.
    [13] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “Ir-uwb radar demonstrator for ultra-fine

    movement detection and vital-sign monitoring,” IEEE transactions on microwave theory and tech-
    niques, vol. 61, no. 5, pp. 2076–2085, 2013.

    [14] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor breathing and
    heart rate,” in in Proceedings of the 33rd annual ACM conference on human factors in computing
    systems, pp. 837–846, 2015.
    [15] A. Ahmad, J. C. Roh, D. Wang, and A. Dubey, “Vital signs monitoring of multiple people using
    a fmcw millimeter-wave sensor,” in 2018 IEEE Radar Conference (RadarConf18), pp. 1450–1455,
    2018.

    [16] S. Ji, H. Wen, J. Wu, Z. Zhang, and K. Zhao, “Systematic heartbeat monitoring using a fmcw mm-
    wave radar,” in in 2021 IEEE International Conference on Consumer Electronics and Computer

    Engineering (ICCECE), pp. 714–718, IEEE, 2021.

    [17] K. Yamamoto, K. Toyoda, and T. Ohtsuki, “Cnn-based respiration rate estimation in indoor environ-
    ments via mimo fmcw radar,” in 2019 IEEE Global Communications Conference (GLOBECOM),

    pp. 1–6, 2019.

    [18] J. Tu and J. Lin, “Fast acquisition of heart rate in noncontact vital sign radar measurement using time-
    window-variation technique,” IEEE Transactions on Instrumentation and Measurement,, vol. 65,

    no. 1, pp. 112–122, 2015.
    [19] S. Pisa, E. Pittella, and E. Piuzzi, “A survey of radar systems for medical applications,” IEEE
    Aerospace and Electronic Systems Magazine, vol. 31, no. 11, pp. 64–81, 2016.
    [20] Y. Wang, W. Wang, M. Zhou, A. Ren, and Z. Tian, “Remote monitoring of human vital signs based
    on 77-ghz mm-wave fmcw radar,” Sensors, vol. 20, p. 10, 2020.
    [21] F. Jin, R. Zhang, A. Sengupta, S. Cao, S. Hariri, N. K. Agarwal, and S. K. Agarwal, “Multiple
    patients behavior detection in realtime using mmwave radar and deep cnns,” in 2019 IEEE Radar
    Conference (RadarConf), pp. 1–6, 2019.
    [22] L. Ding, M. Ali, S. Patole, and A. Dabak, “Vibration parameter estimation using fmcw radar,” in
    in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
    pp. 2224–2228, IEEE, 2016.
    [23] M. He, Y. Nian, and Y. Gong, “Novel signal processing method for vital sign monitoring using fmcw
    radar,” Biomedical Signal Processing and Control, vol. 33, pp. 335–345, 2017.

    77

    [24] M. C. Guerrero, J. S. Parada, and H. E. Espitia, “Eeg signal analysis using classification techniques:
    Logistic regression, artificial neural networks, support vector machines, and convolutional neural
    networks,” Heliyon, vol. 7, p. 6, 2021.
    [25] N. S. Bastos, B. P. Marques, D. F. Adamatti, and C. Z. Billa, “Analyzing eeg signals using decision
    trees: A study of modulation of amplitude,” Computational Intelligence and Neuroscience, vol. 2020,
    2020.
    [26] R. Rohan and L. V. R. Kumari, “Classification of sleep apneas using decision tree classifier,” in
    in 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS),
    pp. 1310–1316, 2021.

    [27] A. Ejupi and C. Menon, “Detection of talking in respiratory signals: A feasibility study using ma-
    chine learning and wearable textile based sensors,” Sensors, vol. 18, p. 8, 2018.

    [28] D. Miao, H. Zhao, H. Hong, X. Zhu, and C. Li, “Doppler radar-based human breathing patterns
    classification using support vector machine,” in 2017 IEEE Radar Conference (RadarConf), pp. 456–
    0459, 2017.
    [29] S.-H. Kim and G.-T. Han, “1d cnn based human respiration pattern recognition using ultra-wideband

    radar,” in in 2019 International Conference on Artificial Intelligence in Information and Communi-
    cation (ICAIIC), pp. 411–414, IEEE, 2019.

    [30] A. T. Purnomo, D.-B. Lin, T. Adiprabowo, and W. F. Hendria, “Non-contact monitoring and clas-
    sification of breathing pattern for the supervision of people infected by covid-19,” Sensors, vol. 21,

    pp. 1424–8220, April 2021.
    [31] A. Paleczek, D. Grochala, and A. Rydosz, “Artificial breath classification using xgboost algorithm
    for diabetes detection,” Sensors, vol. 21, p. 12, 2021.
    [32] M. Bahoura, “Pattern recognition methods applied to respiratory sounds classification into normal
    and wheeze classes,” Computers in biology and medicine, vol. 39, no. 9, pp. 824–43, 2009.
    [33] N. T. L. and W. Y., “Frequency features selection using decision tree for classification of sleep
    breathing sound,” Information Science and Applications (ICISA) 2016, vol. 376, February 2016.
    [34] D. H. Wolpert, “Stacked generalizatin,” Neural Networks, vol. 5, pp. 241–259, 1992.
    [35] S. Dzeroski and B. Zenko, “Is combining classifiers with stacking better than selecting the best one?,”
    Machine Learning, vol. 54, no. 3, pp. 255–273, 2004.
    [36] R. Maclin and D. W. Opitz, “Popular ensemble methods: An empirical study,” CoRR, vol. 1106,
    2011.

    78

    [37] T. G. Dietterich, “Ensemble methods in machine learning,” in in Proceedings of the First Interna-
    tional Workshop on Multiple Classifier Systems, p., , , Heidelberg, pp. 1–15, Berlin: Springer-Verlag,

    2000.

    [38] D. Sarkar and V. Natarajan, Ensemble Machine Learning Cookbook. Birmingham, UK: Pack Pub-
    lishing, 2019.

    [39] K. Edanami and G. Sun, “Medical radar signal dataset for non-contact respiration and heart rate
    measurement,” Data in brief, vol. 40, p. 4, December 2021.

    [40] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning with oversampling and under-
    sampling techniques: Overview study and experimental results,” in 2020 11th International Confer-
    ence on Information and Communication Systems (ICICS), pp. 243–248, 2020.

    [41] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority over-
    sampling technique,” Journal Of Artificial Intelligence Research, vol. 16, pp. 321–357, January 2002.

    [42] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling approach for imbal-
    anced learning,” in in 2008 IEEE International Joint Conference on Neural Networks (IEEE World

    Congress on Computational Intelligence), pp. 1322–1328, 2008.
    [43] R. Santhanam, N. Uzir, S. Raman, and S. Banerjee, “Experimenting xgboost algorithm for prediction
    and classification of different datasets,” International Journal Of Control Theory And Applications,
    pp. 651–662, 2016.
    [44] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu, “Lightgbm: A highly
    efficient gradient boosting decision tree,” in Proceedings of the 31st International Conference on
    Neural Information Processing Systems (NIPS’17), pp. 3149–3157, 2017.

    [45] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased boost-
    ing with categorical features,” in In Proceedings of the 32nd International Conference on Neural

    Information Processing Systems (NIPS’18), pp. 6639–6649, 2018.
    [46] J. Muhlsteff, J. Thijs, and R. Pinter, “The use of a two channel doppler radar sensor for the char- ̈
    acterization of heart motion phases,” in 2006 International Conference of the IEEE Engineering in
    Medicine and Biology Society, pp. 547–550, IEEE, 2006.
    [47] H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu, “Noncontact physiological dynamics detection
    using low-power digital-if doppler radar,” IEEE Transactions on Instrumentation and Measurement,
    vol. 66, no. 7, pp. 1780–1788, 2017.
    [48] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “Ir-uwb radar demonstrator for ultra-fine

    movement detection and vital-sign monitoring,” IEEE transactions on microwave theory and tech-
    niques, vol. 61, no. 5, pp. 2076–2085, 2013.

    79

    [49] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor breathing
    and heart rate,” in Proceedings of the 33rd annual ACM conference on human factors in computing
    systems, pp. 837–846, 2015.
    [50] A. Ahmad, J. C. Roh, D. Wang, and A. Dubey, “Vital signs monitoring of multiple people using
    a fmcw millimeter-wave sensor,” in 2018 IEEE Radar Conference (RadarConf18), pp. 1450–1455,
    IEEE, 2018.

    [51] S. Ji, H. Wen, J. Wu, Z. Zhang, and K. Zhao, “Systematic heartbeat monitoring using a fmcw mm-
    wave radar,” in 2021 IEEE International Conference on Consumer Electronics and Computer Engi-
    neering (ICCECE), pp. 714–718, IEEE, 2021.

    [52] K. Yamamoto, K. Toyoda, and T. Ohtsuki, “Cnn-based respiration rate estimation in indoor environ-
    ments via mimo fmcw radar,” in 2019 IEEE Global Communications Conference (GLOBECOM),

    pp. 1–6, IEEE, 2019.

    [53] J. Tu and J. Lin, “Fast acquisition of heart rate in noncontact vital sign radar measurement us-
    ing time-window-variation technique,” IEEE Transactions on Instrumentation and Measurement,

    vol. 65, no. 1, pp. 112–122, 2015.
    [54] S. Pisa, E. Pittella, and E. Piuzzi, “A survey of radar systems for medical applications,” IEEE
    Aerospace and Electronic Systems Magazine, vol. 31, no. 11, pp. 64–81, 2016.
    [55] Y. Li and S. O’Young, “Method of doubling range resolution without increasing bandwidth in fmcw
    radar,” Electronics Letters, vol. 51, no. 12, pp. 933–935, 2015.
    [56] C. Gu, “Short-range noncontact sensors for healthcare and other emerging applications: A review,”
    Sensors, vol. 16, no. 8, p. 1169, 2016.
    [57] C.-H. Hsieh, Y.-F. Chiu, Y.-H. Shen, T.-S. Chu, and Y.-H. Huang, “A uwb radar signal processing
    platform for real-time human respiratory feature extraction based on four-segment linear waveform
    model,” IEEE transactions on biomedical circuits and systems, vol. 10, no. 1, pp. 219–230, 2015.

    [58] C. Buy ̈ ukhan, S. Karamzadeh, M. Orhan, A. C ̧ aliskan, and ̈ ́I. C ̧ ilesiz, “Experimental study of hu-
    man respiratory detection using uwb gpr,” in 2017 4th International Conference on Electrical and

    Electronic Engineering (ICEEE), pp. 314–317, IEEE, 2017.
    [59] A. Lazaro, D. Girbau, and R. Villarino, “Analysis of vital signs monitoring using an ir-uwb radar,”
    Progress In Electromagnetics Research, vol. 100, pp. 265–284, 2010.
    [60] L. Ding, M. Ali, S. Patole, and A. Dabak, “Vibration parameter estimation using fmcw radar,”
    in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
    pp. 2224–2228, IEEE, 2016.

    80

    [61] M. He, Y. Nian, and Y. Gong, “Novel signal processing method for vital sign monitoring using fmcw
    radar,” Biomedical Signal Processing and Control, vol. 33, pp. 335–345, 2017.
    [62] Y. Wang, W. Wang, M. Zhou, A. Ren, and Z. Tian, “Remote monitoring of human vital signs based
    on 77-ghz mm-wave fmcw radar,” Sensors, vol. 20, no. 10, p. 2999, 2020.
    [63] F. Jin, R. Zhang, A. Sengupta, S. Cao, S. Hariri, N. K. Agarwal, and S. K. Agarwal, “Multiple
    patients behavior detection in real-time using mmwave radar and deep cnns,” in 2019 IEEE Radar
    Conference (RadarConf), pp. 1–6, IEEE, 2019.

    [64] K. Ramasubramanian, “mmwave radar for automotive and industrial applications,” Texas Instru-
    ments (TI) mmWave Training, 2017.

    [65] A. T. Purnomo, K. S. Komariah, D.-B. Lin, W. F. Hendria, and B.-K. Sin, “BWD: Breathing Wave-
    form Dataset,” 6 2022.

    [66] G. Yuan, N. Drost, and R. McIvor, “Respiratory rate and breathing pattern,” McMaster University
    Medical Journal: Clinical Review, vol. 10, no. 1, pp. 23–25, 2013.
    [67] Y. S. Lee, P. N. Pathirana, C. L. Steinfort, and T. Caelli, “Monitoring and analysis of respiratory
    patterns using microwave doppler radar,” IEEE journal of translational engineering in health and
    medicine, vol. 2, pp. 1–12, 2014.
    [68] L. Lum, “Hyperventilation syndromes in medicine and psychiatry: a review,” Journal of the Royal
    Society of Medicine, vol. 80, no. 4, pp. 229–231, 1987.
    [69] L. Whited and D. D. Graham, Abnormal respirations. 2021.
    [70] W. C. Moore, E. R. Bleecker, D. CurranEverett, S. C. Erzurum, B. T. Ameredes, L. Bacharier, W. J.

    Calhoun, M. Castro, K. F. Chung, and M. P. Clark, “et al., “characterization of the severe asthma phe-
    notype by the national heart, lung, and blood institute’s severe asthma research program,”,” Journal

    of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 405–413, 2007.
    [71] J. E. Fergeson, S. S. Patel, and R. F. Lockey, “Acute asthma, prognosis, and treatment,” Journal of
    Allergy and Clinical immunology, vol. 139, no. 2, pp. 438–447, 2017.
    [72] M. Rehman, R. A. Shah, M. B. Khan, S. A. Shah, N. A. AbuAli, X. Yang, A. Alomainy, M. A. Imran,
    and Q. H. Abbasi, “Improving machine learning classification accuracy for breathing abnormalities
    by enhancing data set,” Sensors, vol. 21, p. 20, 2021.
    [73] G. M. Brooker, “Understanding millimetre wave fmcw radars,” in in 1st international Conference on
    Sensing Technology, vol. 1, 2005.

    [74] “Texas instrument iwr 1443 single-chip 76-ghz to 81-ghz mmwave sensor integrating mcu and hard-
    ware accelerator,” 2018.

    81

    [75] J. Guetlein, A. Kirschner, and J. Detlefsen, “Calibration strategy for a tdm fmcw mimo radar system,”
    2013 IEEE International Conference On Microwaves, Communications, Antennas And Electronic
    Systems (COMCAS 2013), pp. 1–5, 2013.
    [76] R. G. Brown, Exponential smoothing for predicting demand. Little, 1956.
    [77] K. Itoh, “Analysis of the phase unwrapping algorithm,” Applied optics, vol. 21, no. 14, pp. 2470–
    2470, 1982.
    [78] G. Matias, “Radar interferometry: 2d phase unwrapping via graph cuts,” (Citeseer, vol. 2006.
    [79] J. Kranjec, S. Begus, G. Ger ˇ sak, and J. Drnov ˇ sek, “Non-contact heart rate and heart rate variability ˇ
    measurements: A review,” Biomedical signal processing and control, vol. 13, pp. 102–112, 2014.
    [80] “Iir bandpass filters using cascaded biquads.”
    [81] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge and
    Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.
    [82] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Journal of
    Big Data, vol. 6, pp. 1–54, 2019.
    [83] T. Barros, P. Neto, I. Silva, and L. Guedes, “Predictive models for imbalanced data: A school dropout
    perspective,” Education Sciences, vol. 9, pp. 1–17, 2019.
    [84] M.-C. Huang, W. Xu, J. Liu, L. Samy, A. Vajid, N. Alshurafa, and M. Sarrafzadeh, Inconspicuous
    on-bed respiratory rate monitoring. ACM International Conference Proceeding Series, 2013.
    [85] D. S. Sankar, K. Durairaj, and K. Seethalaksmi, “Energy based feature extraction for classification of
    respiratory signals using modified threshold based algorithm,” International Journal of Engineering
    Science and Technology, vol. 2, October 2010.
    [86] W. Caesarendra and T. Tjahjowidodo, “A review of feature extraction methods in vibration-based
    condition monitoring and its application for degradation trend estimation of low-speed slew bearing,”
    Machines, vol. 5, p. 4, 2017.
    [87] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser, “A statistical featurebased approach
    for operations recognition in drilling time series,” in CISIM 2012, 2012.
    [88] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine
    Learning, vol. 3, pp. 1157–1182, March 2003.
    [89] N. Gayatri, S. Nickolas, and A. V. Reddy, “Anova discriminant analysis for features selected through
    decision tree induction method,” in Global Trends in Computing and Communication Systems. ,
    Germany: Berlin Heidelberg, pp. 61–70, Berlin: Springer, 2012.

    82

    [90] “F-test,” May 2022.
    [91] M. B. Alsabek, I. Shahin, and A. Hassan, “Studying the similarity of covid-19 sounds based on
    correlation analysis of mfcc,” CoRR, vol. 2010, 2020.
    [92] G. Chaudhari, X. Jiang, A. Fakhry, A. Han, J. Xiao, S. Shen, and A. Khanzada, “Virufy: Global
    applicability of crowdsourced and clinical data sets for ai detection of covid-19 from cough,” CoRR,
    vol. 2011, p. 13320, 2020.
    [93] J. Laguarta, F. Hueto, and B. Subirana, “Covid-19 artificial intelligence diagnosis using only cough
    recordings,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 275–281, 2020.
    [94] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res, vol. 3,
    pp. 993–1022, 2003.
    [95] Y. Li, J. Gao, Q. Li, and F. Wei. Data Mining and Knowledge Discovery Series.
    [96] L. Kuncheva and C. Whitaker, “Measures of diversity in classifier ensembles and their relationship
    with the ensemble accuracy,” Machine Learning, vol. 51, pp. 181–207, 2003.
    [97] L. Breiman, “Stacked regressions,” Machine Learning, vol. 24, no. 1, pp. 49–64, 1996.

    [98] A. El-Habil, “An application on multinomial logistic regression model,” Pakistan Journal of Statis-
    tics and Operation Research, vol. 8, 03 2012.

    [99] K. P. Murphy, Machine learning : a probabilistic perspective. MIT Press, 2013.
    [100] Y. Zhong, “The analysis of cases based on decision tree,” in 2016 7th IEEE International Conference
    on Software Engineering and Service Science (ICSESS), pp. 142–147, 2016.
    [101] Y. Izza, A. Ignatiev, and J. Marques-Silva, “On explaining decision trees,” CoRR,
    vol. abs/2010.11034, 2020.
    [102] G. Biau, “Analysis of a random forests model,” Journal of Machine Learning Research, vol. 13,
    no. Apr, pp. 1063–1095, 2012.
    [103] L. Breiman, “Random forests,” Machine Learning, vol. 45, p. 5–32, oct 2001.
    [104] U. Shahabat, A. Khan, H. MD Ekramul, and M. Ali Moni, “Comparing different supervised machine
    learning algorithms for disease prediction,” BMC medical informatics and decision making, vol. 19,
    no. 281, 2019.

    [105] A. Meyer-Baese and V. Schmid, Pattern Recognition and Signal Analysis in Medical Imaging (Sec-
    ond Edition): Foundations of Neural Networks. Academic Press: Elsevier Inc., 2014.

    83

    [106] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” CoRR, vol. abs/1603.02754,
    2016.
    [107] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly
    efficient gradient boosting decision tree,” in NIPS, 2017.
    [108] A. V. Dorogush, A. Gulin, G. Gusev, N. Kazeev, L. O. Prokhorenkova, and A. Vorobev, “Fighting
    biases with dynamic boosting,” CoRR, vol. abs/1706.09516, 2017.
    [109] M. A. Ganaie, M. Hu, M. Tanveer, and P. N. Suganthan, “Ensemble deep learning: A review,” CoRR,
    vol. abs/2104.02395, 2021.
    [110] M. A. Ganaie, M. Hu, M. Tanveer, and P. N. Suganthan, “Ensemble deep learning: A review,” CoRR,
    vol. 2104, 2021.
    [111] M. J. van der Laan, E. C. Polley, and A. E. Hubbard, “Super learner,” StatisticalApplications in
    Genetics and Molecular Biology, vol. 6, 2007.
    [112] M. Grandini, E. Bagli, and G. Visani tech. rep., ArXiv, title = Metrics for multi-class classification:
    an overview, type = Preprint, year = 2020, archivePrefix = arXiv, eprint = 2008.05756.
    [113] A. Zheng, Evaluating Machine Learning Models. Inc: O’Reilly Media, 2015.
    [114] Z. Zhi-Hua, Ensemble Methods: Foundations and Algorithms. Chapman and Hall Press, 2012.
    [115] A. M. Canuto, M. C. Abreu, L. de Melo Oliveira, J. C. Xavier, and A. de M. Santos, “Investigating
    the influence of the choice of the ensemble members in accuracy and diversity of selection-based
    and fusion-based methods for ensembles,” Pattern Recognition Letters, vol. 28, no. 4, pp. 472–486,
    2007.
    [116] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Willey, 2004.
    [117] J. Prusa, T. M. Khoshgoftaar, and D. J. Dittman, “Using ensemble learners to improve classifier
    performance on tweet sentiment data,” in 2015 IEEE International Conference on Information Reuse
    and Integration, pp. 252–257, 2015.
    [118] S. E. Seker and I. Ocak, “Performance prediction of readheaders using ensemble machine learning
    techniques,” Neural Computing and Applications, vol. 31, 2019.
    [119] B. Y. Tama, L. Nkenyereye, S. M. R. Islam, and K. S. Kwak, “An enhanced anomaly detection in
    web traffic using a stack of classifier ensemble,” IEEE Access, vol. 4, pp. 1–15, 2020.
    [120] M. Lanes, P. F. Schiavo, F. Pereira, E. N. Borges, and R. Galante, “An analysis of diversity on
    stacking supervised classifiers,” in in proceedings of the 19th International Conference on Enterprise
    Information Systems (ICEIS 2017), pp. 233–240, vol. 1, 2017.

    84

    [121] J. Z. al., “Automatic sleep stage classification with single channel eeg signal based on two-layer
    stacked ensemble model,” IEEE Access, vol. 8, pp. 57283–57297, 2020.
    [122] M. Massaoudi, H. Abu-Rub, S. S. Refaat, I. Chihi, and F. S. Oueslati, “An effective ensemble learning
    approach-based grid stability assessment and classification,” 2021 IEEE Kansas Power and Energy
    Conference (KPEC), pp. 1–6, 2021.
    [123] N. Ke, G. Shi, and Y. Zhou, “Stacking model for optimizing subjective well-being predictions based
    on the cgss database,” Sustainability, vol. 13, no. 21, pp. 1–17, 2021.
    [124] G. Ke, Q. Meng, T. W. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu, “Lightgbm: A highly
    efficient gradient boosting decision tree,” in Proc. Adv. Neural Inf. Process. Syst, pp. 3149–3157,
    2017.
    [125] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and H. A. Rub, “A novel stacked

    generalization ensemble-based hybrid lgbm-xgb-mlp model for short-term load forecasting,” Sus-
    tainability, vol. 214, 2020.

    [126] X. Guo, Y. Gao, D. Zheng, Y. Ning, and Q. Zhao, “Study on short-term photovoltaic power prediction
    model based on the stacking ensemble learning,” Energy Reports, vol. 6, pp. 1424–1431, 2020.

    [127] K. M. Ting and I. Witten, “Issues in stacked generalization,” Journal of Artificial Intelligence Re-
    search, vol. 10, 2002.

    [128] S. L. Javan, M. M. Sepehri, M. L. Javan, and T. Khatibi, “An intelligent warning model for early
    prediction of cardiac arrest in sepsis patients,” Computer Methods and Programs in Biomedicine,
    vol. 178, pp. 47–58, 2019.
    [129] J. Niestroy, J. Han, J. Luo, R. Zhao, D. E. Lake, and A. Flower, “Prediction of decompensation
    in patients in the cardiac ward,” 2019 Systems and Information Engineering Design Symposium
    (SIEDS), pp. 1–6, 2019.
    [130] M. L. Williams, W. P. James, and M. T. Rose, “Variable segmentation and ensemble classifiers for
    predicting dairy cow behaviour,” Biosystems Engineering, vol. 178, pp. 156–167, 2019.
    [131] N. T. Cockroft, X. Cheng, and J. R. Fuchs, “Starfish: A stacked ensemble target fishing approach
    and its application to natural products,” J Chem Inf Model, vol. 59, pp. 4906–4920, 2019.
    [132] A. Altmann, M. R. Zvi, M. Prosperi, E. Aharoni, H. Neuvirth, E. Schulter, J. Buch, D. Struck,

    Y. Peres, F. Incardona, A. Sonnerborg, R. Kaiser, M. Zazzi, and T. Lengauer, “Comparison of classi-
    fier fusion methods for predicting response to anti hiv-1 therapy,” PLoS ONE, vol. 3, no. 10, pp. 1–9,

    2008.

    85

    [133] N. AbaeiKoupaei and H. A. Osman, A multi-modal stacked ensemble model for bipolar disorder
    classification. IEEE Transactions On Affective Computing, 2020.
    [134] H. Ehya, T. Skreien, and A. Nysveen, Intelligent data-driven diagnosis of incipient inter-turn short
    circuit fault in field winding of salient pole synchronous generators. IEEE Transactions On Industrial
    Informatics, 2021.

    [135] A. Meyer-Baese and V. Schmid, Pattern Recognition and Signal Analysis in Medical Imaging (Sec-
    ond Edition): Foundations of Neural Networks. Academic Press: Elsevier Inc, 2014.

    [136] A. T. Purnomo, D.-B. Lin, T. Adiprabowo, and W. F. Hendria, “Non-contact monitoring and clas-
    sification of breathing pattern for the supervision of people infected by covid-19,” Sensors, vol. 21,

    pp. 1424–8220, April 2021.
    [137] W. Caesarendra and T. Tjahjowidodo, “A review of feature extraction methods in vibration-based
    condition monitoring and its application for degradation trend estimation of low-speed slew bearing,”
    Machines, vol. 5, p. 4, 2017.
    [138] B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser, “A statistical feature-based approach
    for operations recognition in drilling time series,” in International Journal of Computer Information
    Systems and Industrial Management Applications 2013, vol. 5, pp. 454–461, December 2013.
    [139] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” in J. Mach. Learn.
    Res, vol. 3, pp. 1157–1182, March 2003.
    [140] N. Gayatri, S. Nickolas, and A. V. Reddy, “Anova discriminant analysis for features selected through
    decision tree induction method,” in Communications in Computer and Information Science (CCIS)
    book series, vol. 269, 2011.

    [141] N. Japkowicz, “Assessment metrics for imbalanced learning,” in in Imbalanced Learning: Founda-
    tions, Algorithms, and Applications, John & Sons Ltd, pp. 187–210, 2013.

    [142] A. Zheng, Evaluating Machine Learning Models. Inc: O’Reilly Media, 2015.

    QR CODE