簡易檢索 / 詳目顯示

研究生: 宋易穎
Yi-Ying Sung
論文名稱: 原子力顯微影像於DNA片段切向量之研究
Estimation of DNA Contour Tangential with Atomic Force Microscopy Imaging
指導教授: 張以全
Peter I-Tsyuen Chang
口試委員: 黃緒哲
Shiuh-Jer Huang
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 130
中文關鍵詞: 原子力顯微鏡影像處理高分子聚合物蠕蟲鏈模型去氧核糖核酸持久長度
外文關鍵詞: AFM, Image processing, Biopolymer, Worm-Like Chain model, DNA, persistence length
相關次數: 點閱:295下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原子力顯微鏡(Atomic Force Microscope, AFM)能夠捕捉奈米解析度下的生物高
    分子畫面,並且經常被用在長條狀高分子生物(Long Chain Biopolymer)樣本的成
    像,例如:去氧核醣核酸(deoxyribonucleic acid, DNA)。有許多研究致力於使DNA於AFM 的成像更加清楚,以及為了更加了解DNA 長鏈高分子模型,所以國
    際上很多團隊發展了分子鏈的幾何特徵運算,常見的幾何特徵、例如:輪廓長
    度(Countour Length)和持久長度(Persistence Length)。輪廓長度指的是DNA 輪廓外型的總長,在不同的影像解析度下計算輪擴長度會有誤差。因此在之前的研究中
    有很多學者提出了不同的演算法來進行估測,而不同演算法亦有不同修正精的度
    方式。本論文之前的研究是分析八連通費里曼鏈碼來設計出針對不同解析度下輪
    廓長度的計算,我們將DNA 影像經過一系列的影像處理後將二值影像細線化至
    單一像素寬,並針對單一像素寬的DNA 影像分析並整理出形狀數來對輪廓長度
    的估測結果進行修正。持久長度代表DNA 分子鏈的剛性,能夠預估DNA 的彎
    曲情形。然而在計算DNA 的持久長度時,需要精準的曲線輪廓長度以及精準的
    輪廓切向量,才能有準確的估測結果。因此本論文將研究DNA 切向量的估測方
    式。


    Atomic Force Microscopy (AFM) captures nano-scale resolution biopolymers with
    relative ease, and has been applied to image string-like biopolymer samples , such as
    deoxyribonucleic acid (DNA). In order to make the calculation of DNA Geometric characteristics
    such as contour length and Persistence Length , there are many researches
    devoted to acquiring clearer AFM image of DNA. Contour length refers to the length of
    the DNA shape , and there are some error when calculating in different image resolutions.
    In the previous study, there are many researcher have proposed different algorithms to
    estimate , and different algorithms have different ways to revise the accuracy. The previous
    study of this paper was analyze the 8-connected Freeman chain codes, to design a
    estimater for estimating contours length in different pixel resolutions. We do a series of
    image processing for the DNA image after that we thining binary image into single pixel
    width , and analysing the single width images pixel , then sort out the shape numbers and
    use the shape numbers to revise the estimating result.The persistence length represents the
    rigidity of the DNA molecular chain and can predict the bending of the DNA. in order to
    have accurate estimattion in persistence length , we need the accurate contour length and
    the contour tangent . Therefore, we will study the DNA contour tangent estimation
    method.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 介紹 1.1 研究背景 1.1.1 原子力顯微鏡介紹 1.1.2 去氧核糖核酸介紹 1.2 目的與動機 1.3 文獻回顧 1.3.1 輪廓長度估測器 1.3.2 持久長度估測 第二章 影像處理 2.1 AFM之影像特性 2.2 影像處理步驟 2.2.1 彩色影像灰階化 2.2.2 灰階影像二值化與連通成分標記 2.2.3 擷取樣本影像 2.2.4 二值化及平滑化 2.2.5 剔除交叉重疊樣本 2.2.6 細線化 2.2.7 剪除突刺 2.2.8 復原遭錯誤剪除的DNA線段 2.2.9 單條DNA樣本的輪擴長計算 第三章 DNA片段模擬 3.1 蠕蟲鏈模型 3.2 產生離散的DNA片段座標 3.3 篩選方式 3.3.1 DNA片段座標轉換成DNA片段影像 第四章 DNA片段曲線切向量及持久長度的估測 4.1 持久長度 4.2 切向量計算方式 4.3 持久長度計算方式 4.3.1 局部輪擴曲線擬合 4.3.2 端點切向量夾角計算 第五章 估測結果 5.1 蠕蟲鏈模型實驗量測結果 5.2 DNA影像實驗量測結果 5.3 DNA片段影像切向量估測 5.3.1 輸入DNA片段影像像素座標及差分向量個數 5.3.2 決定啟始端點以及結束端點 5.3.3 指定起始端點為當前端點 5.3.4 當前端點切向量估測 5.3.5 判斷當前端點是否為結束端點 5.4 影像切向量估測結果 第六章 結論與未來工作 6.1 結論 6.2 未來工作 參考文獻 附錄A 輪廓長度計算方式 附錄B 持久長度切向量夾角統計結果

    [1] “deoxyribonucleic acid (dna) wiki https://zh.wikipedia.org/wiki/2017.
    [2] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A tutorial on the mechanisms, dynamics, and control of atomic force microscopes,” in American Control Conference, 2007. ACC’07, pp. 3488–3502, IEEE, 2007.
    [3] 蔡毓楨, 原子力顯微鏡實作訓練教材. 國家圖書館, 2007.
    [4] “民生及食品奈米科技網站,” 12 2009.
    [5] Y. Lyubchenko, L. Shlyakhtenko, R. Harrington, P. Oden, and S. Lindsay, “Atomic force microscopy of long dna: imaging in air and under water.,” Proceedings of the National Academy of Sciences, vol. 90, no. 6, pp. 2137–2140, 1993.
    [6] H.G.Hansma,“Surfacebiologyofdnabyatomicforcemicroscopy,”Annualreview of physical chemistry, vol. 52, no. 1, pp. 71–92, 2001.
    [7] C. Rivetti, M. Guthold, and C. Bustamante, “Scanning force microscopy of dna de- posited onto mica: Equilibrationversuskinetic trapping studied by statistical polymer chain analysis,” Journal of molecular biology, vol. 264, no. 5, pp. 919–932, 1996.
    [8] “A-b-z-dna side view.” via Wikimedia Commons, March 2005.
    [9] Wiki, “Dna structure.” Wikimedia, 2016.
    [10] T. Spisz, Y. Fang, R. H. Reeves, C. Seymour, I. N. Bankman, and J. H. Hoh, “Au- tomated sizing of dna fragments in atomic force microscope images,” Medical and Biological Engineering and Computing, vol. 36, no. 6, pp. 667–672, 1998.
    [11] E. Ficarra, L. Benini, E. Macii, and G. Zuccheri, “Automated dna fragments recog- nition and sizing through afm image processing,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 4, pp. 508–517, 2005.
    [12] C. Rivetti, “A simple and optimized length estimator for digitized dna contours,” Cytometry Part A, vol. 75, no. 10, pp. 854–861, 2009.[13] C. Rivetti, C. Walker, and C. Bustamante, “Polymer chain statistics and confor- mational analysis of dna molecules with bends or sections of different flexibility,” Journal of molecular biology, vol. 280, no. 1, pp. 41–59, 1998.
    [14] J. Bednar, P. Furrer, V. Katritch, A. Stasiak, J. Dubochet, and A. Stasiak, “Deter- mination of dna persistence length by cryo-electron microscopy. separation of the static and dynamic contributions to the apparent persistence length of dna,” Journal of molecular biology, vol. 254, no. 4, pp. 579–594, 1995.
    [15] E. Ficarra, D. Masotti, E. Macii, L. Benini, G. Zuccheri, and B. Samor`ı, “Auto- matic intrinsic dna curvature computation from afm images,” IEEE transactions on biomedical engineering, vol. 52, no. 12, pp. 2074–2086, 2005.
    [16] D. M. S. L.-M. Z. Leonenko, D. Cramb, “Atomic force microscopy at the interface of chemistry and biology,” Recent Research Developments in Physical Chemistry, vol. Vol. 6, pp. pp.75–89, 2002.
    [17] S. B. Gray, “Local properties of binary images in two dimensions,” IEEE Transac- tions on Computers, vol. 100, no. 5, pp. 551–561, 1971.
    [18] W. K. Pratt, “Geometrical image modification,” Digital Image Processing: PIKS Scientific Inside, Fourth Edition, pp. 387–417, 2007.
    [19] H. Papasaika-Hanusch, “Digital image processing using matlab,” Institute of Geodesy and Photogrammetry, ETH Zurich, vol. 63, 1967.
    [20] L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive sur- vey,” IEEE Transactions on pattern analysis and machine intelligence, vol. 14, no. 9, pp. 869–885, 1992.
    [21] C. Rivetti, M. Guthold, and C. Bustamante, “Scanning force microscopy of dna de- posited onto mica: Equilibrationversuskinetic trapping studied by statistical polymer chain analysis,” Journal of molecular biology, vol. 264, no. 5, pp. 919–932, 1996.
    [22] C. Rivetti and S. Codeluppi, “Accurate length determination of dna molecules visu- alized by atomic force microscopy: evidence for a partial b-to a-form transition on mica,” Ultramicroscopy, vol. 87, no. 1, pp. 55–66, 2001.
    [23] Y. Fang, J. H. Hoh, and T. S. Spisz, “Ethanol-induced structural transitions of dna on mica,” Nucleic acids research, vol. 27, no. 8, pp. 1943–1949, 1999.
    [24] “persistence length,” 10 2015.
    [25] P. I. Chang, Y. Y. Song, and M. C. Hsaio, “Estimation of dna persistence length with atomic force microscopy imaging,” in ICARCV, Department of Mechanical Engi- neering National Taiwan University of Science and Technology NTUST / Taiwan Tech, 2016.
    [26] J. Matas, Z. Shao, and J. Kittler, “Estimation of curvature and tangent direction by median filtered differencing,” in Image Analysis and Processing, pp. 83–88, Springer, 1995.
    [27] A. K. Mazur and M. Maaloum, “Atomic force microscopy study of dna flexibility on short length scales: smooth bending versus kinking,” Nucleic acids research, vol. 42, no. 22, pp. 14006–14012, 2014.
    [28] H. Freeman, “On the encoding of arbitrary geometric configurations,” IRE Transac- tions on Electronic Computer, vol. no. 2, pp. 260–268, 1961.
    [29] E. Bribiesca and A. Guzman, “How to describe pure form and how to measure differences in shapes using shape numbers,” Pattern Recognition, vol. 12, no. 21, pp. 101–112, 1980.
    [30] P. I. Chang and S. B. Andersson, “Theoretical bounds on a non-raster scan method for tracking string-like samples,” in Proceedings of the American Control Confer- ence, pp. 2266–2271, 2009.
    [31] P. I. Chang and S. B. Andersson, “Probabilistic bounds for complete scanning in non-raster atomic force microscopy,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 6278–6283, IEEE, 2011.
    [32] P. I. Chang, P. Huang, J. Maeng, and S. B. Andersson, “Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy,” Review of scientific instruments, vol. 82, no. 6, p. 063703, 2011.
    [33] P. I. Chang and S. B. Andersson, “Non-raster scanning in atomic force microscopy for high-speed imaging of biopolymers,” in Control Technologies for Emerging Mi- cro and Nanoscale Systems, pp. 101–117, Springer, 2011.
    [34] P. I. Chang, D. Chavan, R. Paris, D. Iannuzzi, and G. Schitter, “Towards high speed ferrule-top atomic force microscopy,” IFAC Proceedings Volumes, vol. 46, no. 5, pp. 131–137, 2013.
    [35] P. I. g. Chang and M.-C. Hsiao, “Intelligent afm image processing and analysis for string-like biopolymers,” National Symposium on System Science and Engineering, 17 19 July 2015.
    [36] H. Sa ́nchez and C. Wyman, “Sfmetrics: an analysis tool for scanning force mi- croscopy images of biomolecules,” BMC bioinformatics, vol. 16, no. 1, p. 27, 2015.
    [37] H. Wang and J. N. Milstein, “Simulation assisted analysis of the intrinsic stiffness for short dna molecules imaged with scanning atomic force microscopy,” PloS one, vol. 10, no. 11, p. e0142277, 2015.
    [38] A. K. Mazur and M. Maaloum, “Atomic force microscopy study of dna flexibility on short length scales: smooth bending versus kinking,” Nucleic acids research, vol. 42, no. 22, pp. 14006–14012, 2014.
    [39] R. Buzio, L. Repetto, F. Giacopelli, R. Ravazzolo, and U. Valbusa, “Symmetric cur- vature descriptors for label-free analysis of dna,” Scientific reports, vol. 4, p. 6459, 2014.

    QR CODE