簡易檢索 / 詳目顯示

研究生: 李君柔
Chun-Rou Lee
論文名稱: 開發摻雜硫銀鍺礦 Li6PS5Cl 作為硫化物新型固態電解質
Developing doped argyrodite Li6PS5Cl sulfides as new solid electrolytes
指導教授: 蘇威年
Wei-Nien Su
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 固態電解質硫化物硫銀鍺礦離子電導率鉬摻雜劑鈦摻雜劑
外文關鍵詞: solid-state electrolyte, sulfide, argyrodites, ionic conductivity, molybdenum dopant, titanium dopant
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


推薦書 審定書 摘要 i ABSTRACT ii 致謝 iv 目錄 vi 圖目錄 ix 表目錄 xiv 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池的演進與發展 2 1.2.1 鋰一次電池 2 1.2.2 鋰離子二次電池 2 1.3 鋰離子二次電池之機制與組成 5 1.3.1 鋰離子電池反應機制 5 1.3.2 鋰離子電池組成元件 7 1.4 電解質(Electrolyte) 10 1.4.1 有機液態電解液 11 1.4.2 固態電池-無機固態電解質 14 1.5 全固態電池未來展望及挑戰 17 第 2 章 文獻回顧 19 2.1 固態電解質 19 2.1.1 固態電解質技術分類 19 2.1.2 固態電解質鋰離子傳導運輸機制 20 2.2 氧化物固態電解質 23 2.3 硫化物固態電解質 25 2.3.1 固態硫化物電解質的發展史 26 2.3.2 固態硫化物電解質的合成方式 29 2.4 硫銀鍺礦 (Argyrodite type)固態電解質 31 2.4.1 鹵素取代之硫銀鍺礦 31 2.4.2 晶格結構 32 2.4.3 鋰離子在結構中傳導途徑 33 2.5 硫銀鍺礦 (Argyrodite) 改質與挑戰 35 2.6 研究動機與目的 40 第 3 章 實驗方法及實驗儀器 42 3.1 實驗藥品 42 3.2 實驗儀器設備及配件 43 3.3 實驗步驟-材料合成 44 3.3.1 Li6PS5Cl (LPSC) 固態電解質材料合成 44 3.3.2 Li6P(1-X)MoXS5Cl固態電解質材料合成 46 3.3.3 Li(6+X)P(1-X)MoXS5Cl固態電解質材料合成 48 3.3.4 Li(6+X)P(1-X)TiXS5Cl固態電解質材料合成 50 3.3.5 硫化物固態電解質錠片製備 53 3.4 材料結構鑑定特性分析 54 3.4.1 非臨場X射線繞射(ex-situ XRD)之晶格結構變化分析 54 3.4.2 場發射掃描式電子顯微鏡 (FE-SEM) 55 3.4.3 X光吸收光譜 (XAS) 56 3.4.3.1. 延伸X光吸收細微結構(EXAFS) 57 3.4.3.2. X光吸收近邊緣結構(XANES) 60 3.4.4 拉曼散射光譜儀 (Raman Scattering Spectroscopy) 60 3.4.5 硫化氫檢測 61 3.5 材料電化學特性分析 62 3.5.1 KP-cell型電池組裝 62 3.5.2 充放電測試 63 3.5.3 交流阻抗分析 63 第 4 章 結果與討論- Li6PS5Cl合成條件及優化 64 4.1 以不同合成條件製備Li6PS5Cl固態電解質 64 4.1.1 以不同球磨時間製備之優化 64 4.1.2 以不同球磨轉速製備並探討鍛燒升溫速度和持溫時間 65 4.1.3 以不同鍛燒溫度製備之優化 66 4.1.4 鍛燒溫度與時間條件結構鑑定 67 4.1.5 優化合成條件的Li6PS5Cl與市售的Li6PS5Cl比較 68 4.1.6 總結 69 第 5 章 結果與討論 -摻雜不同前驅物之硫銀鍺礦特性分析 70 5.1 摻雜氯化鉬製備固態電解質 70 5.1.1 Li6P(1-x)MoxS5Cl結構鑑定 73 5.1.2 摻雜比例與離子導離率之關係 75 5.2 摻雜二硫化鉬之導離與結構鑑定分析 76 5.2.1 Li(6+X)P(1-X)MoxS5Cl結構鑑定 76 5.2.2 摻雜比例與離子導離率之關係 78 5.3 摻雜二硫化鈦之導離與結構鑑定分析 79 5.3.1 Li(6+x)P(1-x)TixS5Cl結構鑑定 79 5.3.2 摻雜比例與離子導離率之關係 80 5.4 不同前驅物摻雜製備固態電解質與LPSC分析 81 5.4.1 不同前驅物最佳摻雜比例製備固態電解質之電化學分析 81 5.4.2 不同前驅物最佳摻雜比例製備固態電解質之主體結構特徵 84 5.4.3 不同前驅物最佳摻雜比例製備固態電解質之形貌上分析 85 5.4.4 不同前驅物最佳摻雜比例製備固態電解質之環境穩定性 86 5.5 固態電解質之電化學性能分析 87 5.5.1 Li/SSE/Li循環測試 87 5.5.2 極限電流密度測試 88 5.5.1 總結 90 第 6 章 結論 91 第 7 章 未來展望 92 參考文獻 93

1. 王璿靜 全球汽車信息平台Marklines https://www.chinatimes.com/newspapers/20210216000152-260206?chdtv.
2. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-7.
3. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
4. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
5. Dixit, P. Working of Lithium-ion Battery. https://robu.in/working-of-lithium-ion-battery/.
6. Marcy Lowe, S. T., Tali Trigg and Gary Gereffi, Lithium-ion Batteries for Electric Vehicles: the U.S. Value Chain. CGGC 2010.
7. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 2018, 89, 292-308.
8. Abraham, K. M., Prospects and Limits of Energy Storage in Batteries. J Phys Chem Lett 2015, 6 (5), 830-44.
9. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B., Effect of Structure on the Fe3 +  / Fe2 +  Redox Couple in Iron Phosphates. Journal of The Electrochemical Society 2019, 144 (5), 1609-1613.
10. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
11. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D., The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels 2020, 4 (11), 5387-5416.
12. Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A., Fire-extinguishing organic electrolytes for safe batteries. Nature Energy 2017, 3 (1), 22-29.
13. Xu, Z. L.; Yoon, G.; Park, K. Y.; Park, H.; Tamwattana, O.; Joo Kim, S.; Seong, W. M.; Kang, K., Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat Commun 2019, 10 (1), 2598.
14. Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L., Solid-State Sodium Batteries. Advanced Energy Materials 2018, 8 (17), 1703012.
15. Sun, H. B.; Guo, J. Z.; Zhang, Y.; Wei, T.; Zhou, Y. X.; Zhang, L. L.; Wu, X. L.; Huang, Y.; Luo, W., High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. ACS Appl Mater Interfaces 2019, 11 (27), 24192-24197.
16. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem Rev 2020, 120 (14), 6820-6877.
17. Braun, P. V.; Cho, J.; Pikul, J. H.; King, W. P.; Zhang, H., High power rechargeable batteries. Current Opinion in Solid State and Materials Science 2012, 16 (4), 186-198.
18. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
19. Lin, Z.; Xia, Q.; Wang, W.; Li, W.; Chou, S., Recent research progresses in ether‐ and ester‐based electrolytes for sodium‐ion batteries. InfoMat 2019, 1 (3), 376-389.
20. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacín, M. R., In search of an optimized electrolyte for Na-ion batteries. Energ Environ Sci 2012, 5 (9), 8572-8583.
21. Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q.; Li, W., Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries. Acc Chem Res 2018, 51 (2), 282-289.
22. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist's perspective. Chem Soc Rev 2009, 38 (9), 2565-75.
23. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P., Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent Sci 2016, 2 (11), 790-801.
24. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev 2017, 117 (15), 10403-10473.
25. Ghiji, M.; Novozhilov, V.; Moinuddin, K.; Joseph, P.; Burch, I.; Suendermann, B.; Gamble, G., A Review of Lithium-Ion Battery Fire Suppression. Energies 2020, 13 (19).
26. Miller, T. F., 3rd; Wang, Z. G.; Coates, G. W.; Balsara, N. P., Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. Acc Chem Res 2017, 50 (3), 590-593.
27. Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q., Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 2019, 15 (15), e1805389.
28. Weppner, W., Secondary batteries for Lithium rechargeable systems | All-Solid State Battery. 2009.
29. Chen, C. H.; Pan, C. J.; Su, W. N.; Sarma, L. S.; Al Andra, C. C.; Sheu, H. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J., Unravelling Surface Composition of Bimetallic Nanoparticles. ChemNanoMat 2016, 2 (2), 117-124.
30. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; Ku, J. H.; Watanabe, T.; Park, Y.; Aihara, Y.; Im, D.; Han, I. T., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
31. Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W., Solid Garnet Batteries. Joule 2019, 3 (5), 1190-1199.
32. Xu, X.; Hui, K. S.; Hui, K. N.; Wang, H.; Liu, J., Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Materials Horizons 2020, 7 (5), 1246-1278.
33. Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F., Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem Rev 2020, 120 (14), 7020-7063.
34. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004, 104 (10), 4303-417.
35. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4).
36. Cussen, E. J., The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem Commun (Camb) 2006, (4), 412-3.
37. Kasper, H. M., Series of rare earth garnets Ln3+3M2Li+3O12 (M=Te, W). Inorganic Chemistry 2002, 8 (4), 1000-1002.
38. Mazza, D., Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta). Materials Letters 1988, 7 (5-6), 205-207.
39. Subramanian, M.; Subramanian, R.; Clearfield, A., Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics 1986, 18-19, 562-569.
40. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A., Fast Na+-ion transport in skeleton structures. Materials Research Bulletin 1976, 11 (2), 203-220.
41. Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y., Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angew Chem Int Ed Engl 2019, 58 (24), 8039-8043.
42. Park, D.; Park, H.; Lee, Y.; Kim, S. O.; Jung, H. G.; Chung, K. Y.; Shim, J. H.; Yu, S., Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion Batteries. ACS Appl Mater Interfaces 2020, 12 (31), 34806-34814.
43. Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 2016, 5, 139-164.
44. Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y., Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2019, 9 (46).
45. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-62.
46. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G., Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412 (6846), 520-3.
47. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
48. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). Angew Chem Int Ed Engl 2007, 46 (41), 7778-81.
49. Xie, H.; Alonso, J. A.; Li, Y.; Fernández-Díaz, M. T.; Goodenough, J. B., Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Chemistry of Materials 2011, 23 (16), 3587-3589.
50. Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12. Chemistry Letters 2011, 40 (1), 60-62.
51. Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G., Superionic conduction in Li 2 S - P 2 S 5 - LiI - glasses. Solid State Ionics 1981, 5, 663-666.
52. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Materials 2018, 14, 58-74.
53. Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S., Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All‐Solid‐State Batteries. Advanced Energy Materials 2018, 8 (18).
54. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials 2005, 17 (7), 918-921.
55. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
56. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
57. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
58. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energ Environ Sci 2021, 14 (5), 2577-2619.
59. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013, 135 (3), 975-8.
60. Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D., Application of Rod-Like Li6PS5Cl Directly Synthesized by a Liquid Phase Process to Sheet-Type Electrodes for All-Solid-State Lithium Batteries. Journal of The Electrochemical Society 2018, 166 (3), A5193-A5200.
61. Phuc, N. H. H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A., Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ionics 2016, 288, 240-243.
62. Phuc, N. H. H.; Morikawa, K.; Mitsuhiro, T.; Muto, H.; Matsuda, A., Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 2017, 23 (8), 2061-2067.
63. Winkler, C., Germanium, Ge, ein neues, nichtmetallisches Element. Berichte der deutschen chemischen Gesellschaft 1886, 19 (1), 210-211.
64. Bletskan, D. I., Electronic structure of Ag8GeS6. Semiconductor Physics Quantum Electronics and Optoelectronics 2017, 20 (1), 19-25.
65. Ziolkowska, D. A.; Arnold, W.; Druffel, T.; Sunkara, M.; Wang, H., Rapid and Economic Synthesis of a Li7PS6 Solid Electrolyte from a Liquid Approach. ACS Appl Mater Interfaces 2019, 11 (6), 6015-6021.
66. Zhang, Z.; Sun, Y.; Duan, X.; Peng, L.; Jia, H.; Zhang, Y.; Shan, B.; Xie, J., Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping. Journal of Materials Chemistry A 2019, 7 (6), 2717-2722.
67. Ghidiu, M.; Ruhl, J.; Culver, S. P.; Zeier, W. G., Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective. Journal of Materials Chemistry A 2019, 7 (30), 17735-17753.
68. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl 2008, 47 (4), 755-8.
69. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
70. Chen, H. M.; Maohua, C.; Adams, S., Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 2015, 17 (25), 16494-506.
71. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
72. Rao, R. P.; Sharma, N.; Peterson, V. K.; Adams, S., Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction. Solid State Ionics 2013, 230, 72-76
73. Bai, X.; Duan, Y.; Zhuang, W.; Yang, R.; Wang, J., Research progress in Li-argyrodite-based solid-state electrolytes. Journal of Materials Chemistry A 2020, 8 (48), 25663-25686.
74. Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017, 139 (31), 10909-10918.
75. Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G., Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1–xMxS5I (M = Si, Ge, Sn). Chemistry of Materials 2019, 31 (13), 4936-4944.
76. de Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M., Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chemistry of Materials 2016, 28 (21), 7955-7963.
77. Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G., Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. Journal of Materials Chemistry A 2018, 6 (2), 645-651.
78. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. J Am Chem Soc 2018, 140 (47), 16330-16339.
79. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W.; Deng, S.; Li, R.; Huang, Y.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries. Advanced Energy Materials 2020, 10 (9).
80. Hikima, K.; Huy Phuc, N. H.; Tsukasaki, H.; Mori, S.; Muto, H.; Matsuda, A., High ionic conductivity of multivalent cation doped Li6PS5Cl solid electrolytes synthesized by mechanical milling. RSC Advances 2020, 10 (38), 22304-22310.
81. Zhang, Z.; Zhang, J.; Jia, H.; Peng, L.; An, T.; Xie, J., Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. Journal of Power Sources 2020, 450.
82. Mo, Y.; Ong, S. P.; Ceder, G., First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material. Chemistry of Materials 2011, 24 (1), 15-17.
83. Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors. Nat Mater 2015, 14 (10), 1026-31.
84. Ong, S. P.; Mo, Y.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 2013, 6 (1), 148-156.
85. 國家實驗研究院 利用X-ray 看透材料原子排列結構世界. https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604.
86. Gleichmann, N. SEM vs TEM. https://www.technologynetworks.com/analysis/articles/sem-vs-tem-331262.
87. 國家同步輻射研究中心 44A 快速掃描 X 射線吸收光譜. http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&port=44A&pid=1065.
88. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 2016, 215, 93-99.
89. Wang, H.; Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Wagemaker, M., A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. Journal of Power Sources 2019, 412, 29-36.

無法下載圖示 全文公開日期 2026/08/26 (校內網路)
全文公開日期 2026/08/26 (校外網路)
全文公開日期 2026/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE