簡易檢索 / 詳目顯示

研究生: 藍慧妃
Vina Setiawan
論文名稱: 含飛灰取代量與鹼激發劑漿體及砂漿之工程性質發展
Development of Engineering Properties of Paste and Mortar with Fly Ash Substitution and Addition of Alkaline Activator
指導教授: 張大鵬
Ta-Peng Chang
阮王英
Hoang-Anh Nguyen
口試委員: 黃然
Ran Huang
鄭大偉
Ta-Wui Cheng
阮王英
Hoang-Anh Nguyen
陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 153
中文關鍵詞: F級飛灰矽酸鈉工程性質漿體砂漿
外文關鍵詞: Class F fly ash, Sodium silicate, Engineering properties, Paste, Mortar
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以F級飛灰取代部份水泥,與矽酸鈉溶液取代部份拌合水對於硬固漿體與砂漿之工程性質發展影響,試驗變數包含3種不同水膠比( 0.3、0.4、0.5 );4種飛灰取代率( 0%、10%、30%、50% );與3種矽酸鈉取代量( 0%、5%、10%) ,實驗量測值包含新拌性質,如工作性、初終凝和pH值;硬固性質,及硬固性質,包含抗壓強度、乾縮、超音波速、動態彈性模數、動態剪力模數和卜松比。

    結果顯示:在30%飛灰取代量以下,使用30%飛灰取代量之砂漿或漿體均能改善工程性質,因為潉加飛灰降低水化速率,早期強度會隨著添加飛灰而降低,。然而,在56天齡期下,與控制組相比,所有使用飛灰取代量低於30%之漿體及砂漿之強度均增加約20%。添加矽酸鈉組並無法改善工程性質,反而與控制組相比有較差的表現。總結來說,添加矽酸納並無法如預期地激發飛灰卜作嵐反應。


    This study investigated the engineering properties development of hardened paste and mortar using class F fly ash to partially replace cement and addition of sodium silicate to partially replace mixing water. Experimental variables included three different water-binder ratios (0.3, 0.4, 0.5), four different fly ash substitutions (0%, 10%, 30%, and 50%), and three different amount of sodium silicate (0%, 5%, and 10%) were observed. The fresh properties including workability, setting time, and pH value, then the hardened properties including compressive strength, drying shrinkage, ultrasonic pulse velocity (UPV), dynamic Young’s modulus, dynamic shear modulus, and dynamic Poisson’s ratio were examined through in this study.

    The results showed that the application of fly ash improved the engineering properties of paste and mortar for the fly ash substitution up to 30%. At the early age, the strength decreased with the increase of fly ash substitutions due to the low hydration rate using the fly ash. However, the strengths of all the paste and mortar specimens increased by about 20% using the fly ash replacement up to 30% compared with that of the control set at the age of 56 days. The application of sodium silicate did not affect the engineering properties. On the contrary, it reduced the engineering properties. It can be concluded that the presence of sodium silicate did not activate the pozzolanic reaction of fly ash as expected.

    摘要 iii Abstract iv Acknowledgements v Contents vi List of Tables x Lists of Figures xii List of Symbols and Abbreviations xviii Chapter 1 Introduction 1 1.1 Problem background 1 1.2 Thesis objectives 2 1.3 Thesis outline 3 Chapter 2 Literature Review 2 2.1 Introduction 2 2.2 Fly ash 2 2.3 The effect of low calcium type F fly ash as cement replacement on the mechanical properties 3 2.3.1 Workability 3 2.3.2 Setting time 5 2.3.3 pH value 6 2.3.4 Compressive strength 7 2.3.5 Drying shrinkage 9 2.3.6 Ultrasonic Pulse Velocity (UPV) 11 2.3.7 Modulus of elasticity and Poisson’s ratio 12 2.3.8 Microstructure analysis 13 2.4 The effect of chemical admixture on mechanical properties of paste 15 Chapter 3 Experimental Program 23 3.1 Introduction 23 3.2 Material 23 3.2.1 Ordinary Portland cement (OPC) 23 3.2.2 Low calcium Class F fly ash 23 3.2.3 Superplasticizer (SP) 24 3.2.4 Sodium silicate 24 3.2.5 Fine aggregate 24 3.3 Mix proportion 25 3.4 Mixing and testing program 25 3.4.1 Mixing procedure 25 3.4.2 Workability 26 3.4.3 Setting time 27 3.4.4 pH value 27 3.4.5 Compressive strength 28 3.4.6 Drying shrinkage 29 3.4.7 Ultrasonic Pulse Velocity (UPV) 30 3.4.8 Dynamic Young’s modulus, dynamic shear modulus, and Poisson’s ratio 31 3.4.9 Microstructure analysis 32 Chapter 4 Results and Discussion 44 4.1 Abrams’ water-cement ratio law 44 4.2 Workability 47 4.3 Setting time 48 4.4 pH value 49 4.5 Compressive strength 50 4.4.1 Compressive strength of hardened paste 50 4.4.2 Compressive strength of hardened paste modified with alkaline-silicate activator 52 4.4.3 Compressive strength of hardened mortar 53 4.6 Drying shrinkage 55 4.5.1 Drying shrinkage of hardened paste 55 4.5.2 Drying shrinkage of hardened paste modified with alkaline-silicate activator 55 4.5.3 Drying shrinkage of hardened mortar 56 4.7 Ultrasonic Pulse Velocity (UPV) 57 4.6.1 Ultrasonic Pulse Velocity (UPV) of hardened paste 57 4.6.2 Ultrasonic Pulse Velocity (UPV) of hardened paste modified with alkaline-silicate activator 58 4.6.3 Ultrasonic Pulse Velocity (UPV) of hardened mortar 58 4.8 Dynamic Young’s modulus, dynamic shear modulus and Poisson’s ratio 59 4.7.1 Dynamic Young’s modulus, dynamic shear modulus and Poisson’s ratio on hardened paste 59 4.7.2 Dynamic Young’s modulus, dynamic shear modulus and Poisson’s ratio on hardened paste modified with alkaline-silicate activator 60 4.7.3 Dynamic Young’s modulus, dynamic shear modulus and Poisson’s ratio on hardened mortar 61 4.9 Microstructure analysis 62 Chapter 5 Conclusion and Suggestion 119 5.1 Conclusion 119 5.2 Suggestion 122 References 123

    1. Flower, D. J. M. and Sanjayan, J. G. Green House Gas Emissions due to Concrete Manufacture. Concrete Manufacture 12(5): 282-288. 2007.
    2. Anand, S., Vrat, P. and Dahiya, R. P. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of Environmental Management 79: 383-398. 2005.
    3. Rashad, A. M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. Journal of Cleaner Production 87: 717-725. 2014.
    4. Rashad, A. M. and Zeedan, S. R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials 25: 3098-3107. 2011.
    5. Al-Kutti, W., Nasir, M., Johari, M. A. M., Islam, A. B. M. S., Manda, A. A. and Blaisi, N. I. An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Construction and Building Materials 159: 567-577. 2017.
    6. Thomas, M. Optimizing the Use of Fly Ash in Concrete. Portland Cement Association. 2007.
    7. ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI Committee 211, 2002.
    8. Wang, X.-Y. and Park, K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials 98: 810-819. 2015.
    9. Mirza, J., Mirza, M. S., Roy, V. and Saleh, K. Basic rheological and mechanical properties of high-volume fly ash grouts. Construction and Building Materials 16: 353-363. 2002.
    10. Durán-Herrera, A., Juárez, C. A., Valdez, P. and Bentz, D. P. Evaluation of suistainable high-volume fly ash concretes. Cement and Concrete Composites 33: 39-45. 2010.
    11. Rashad, A. M. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer. International Journal of Sustaiinable Built Environment 4: 278-306. 2015.
    12. Wesche, K. Fly Ash in Concrete: Properties and Performance. 2005
    13. ASTM C618 - 17, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Committee C09, 2017.
    14. Siddique, R. Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research 34: 487-493. 2003.
    15. Balakrishnan, B. and Awal, A. S. M. A. Durability properties of concrete containing high volume Malaysian fly ash. International Journal of Research in Engineering and Technology 3(4): 529-533. 2014.
    16. Supit, S. W. M., Shaikh, F. U. A. and Sarker, P. K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction and Building Materials 51: 278-286. 2013.
    17. Shaikh, F. U. A., Supit, S. W. M. and Sarker, P. K. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials and Design 60: 433-442. 2014.
    18. Sahmaran, M., Keskin, S. B., Ozerkan, G. and Yaman, I. O. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cement and Concrete Composites 30: 872-879. 2008.
    19. Sua-iam, G. and Makul, N. Utilization of high volumes of unprocessed lignite-coal fly ash and rice husk ash in self-consolidating concrete. Journal of Cleaner Production 78: 184-194. 2014.
    20. Silva, P. and Brito, J. d. Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler. Advances inConcrete Construction 1(1): 65-84. 2013.
    21. Zhao, H., Sun, W., Wu, X. and Gao, B. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. Journal of Cleaner Production 95: 66-74. 2015.
    22. Khatib, J. M. Performance of self-compacting concrete containing fly ash. Construction and Building Materials 22: 1963-1971. 2007.
    23. Bentz, D. P. Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cement and Concrete Composites 53: 214-223. 2014.
    24. Zhang, Y. M., Sun, W. and Yan, H. D. Hydration of high-volume fly ash cement pastes. Cement and Concrete Composites 22: 445-452. 2000.
    25. Shi, C. and Qian, J. Activated blended cement containing high volume coal fly ash. Advances in Cement Research 13: 157-163. 2001.
    26. Jiang, L. and Guan, Y. Pore structure and its effect on strength of high-volume fly ash paste. Cement and Concrete Research 29: 631-633. 1999.
    27. Poon, C. S., Lam, L. and Wong, Y. L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research 30: 447-455. 1999.
    28. Fanghui, H., Qiang, W. and Jingjing, F. The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials 93: 172-179. 2015.
    29. Hannesson, G., Kuder, K., Shogren, R. and Lehman, D. The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Construction and Building Materials 30: 161-168. 2011.
    30. Gesoglu, M., Güneyisi, E. and Özbay, E. Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and Building Materials 23: 1847-1854. 2008.
    31. Atis, C. D. High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage. Journal of Materials in Civil Engineering 15(2): 153-156. 2003.
    32. Kumar, B., Tike, G. K. and Nanda, P. K. Evaluation of Properties of High-Volume Fly-Ash Concrete for Pavements. Journal of Materials in Civil Engineering 19(10): 906-911. 2007.
    33. Nath, P. and Sarker, P. Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Engineering 14: 1149-1156. 2011.
    34. Topcu, I. B. and Canbaz, M. Effect of different fibers on the mechanical properties of concrete containing fly ash. Construction and Building Materials 21: 1484-1491. 2006.
    35. Popovics, S. Portland cement-fly ash-silica fume systems in concrete. Advanced Cement Based Materials 1: 83-91. 1993.
    36. Rao, S. K., Sravana, P. and Rao, T. C. Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand. International Journal of Pavement Research and Technology 9: 289-301. 2016.
    37. Demirboga, R., Turkmen, I. b. and Karakoc, M. B. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research 34: 2329-2336. 2004.
    38. Panzera, T. H., Christoforo, A. L., Cota, F. P., Borges, P. H. R. and Bowen, C. R. Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials 17: 411-436. 2011.
    39. Kayali, O. and Ahmed, M. S. Assessment of high volume replacement fly ash concrete – Concept of performance index. Construction and Building Materials 39: 71-76. 2012.
    40. Huang, C.-H., Lin, S.-K., Chang, C.-S. and Chen, H.-J. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Construction and Building Materials 46: 71-78. 2013.
    41. Kuder, K., Lehman, D., Berman, J., Hannesson, G. and Shogren, R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Construction and Building Materials 34: 285-295. 2012.
    42. Franus, W., Panek, R. and Wdowin, M. SEM investigation of microstructures in hydration products of portland cement. 2nd International Multidisciplinary Microscopy and Microanalysis Congress. 2015.
    43. Chindaprasirt, P., Jaturapitakkul, C. and Sinsiri, T. Effect of fly ash fineness on microstructure of blended cement paste. Construction and Building Materials 21: 1534-1541. 2005.
    44. Kocak, Y. and Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction and Building Materials 73: 25-32. 2014.
    45. Palomo, A., Fernandez-Jimenez, A., Kovalchuk, G., Ordonez, L. M. and Naranjo, M. C. Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration. Advances in Geopolymer Science and Technology 42: 2958-2966. 2007.
    46. Owens, K. J., Bai, Y., Cleland, D., Basheer, P. A. M., Kwasny, J., Sonebi, M., Taylor, S. and Gupta, A. Activation of High Volume Fly Ash Pastes Using Chemical Activators. Second International Conference on Sustainable Construction Materials and Technology. 2010.
    47. ASTM C150/C150M - 17, Standard Specification for Portland Cement, ASTM Committee C01, 2017.
    48. Lamond, J. F. and Pielert, J. H. Significance of Tests and Properties of Concrete and Concrete-Making Materials. A. International.2006
    49. ASTM C109/C109M - 16, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM Committee C01, 2016.
    50. Portal, T. C., Chemical Admixtures, http://www.theconcreteportal.com/admix_chem.html, (Last accessed 5 December 2017)
    51. Gilson Company, I., What is Workability of Concrete?, M. T. Equipment, 2016, https://www.globalgilson.com/what-is-workability-of-concrete, (Last accessed 4 December 2017)
    52. ASTM C230/C230M - 14, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM Committee C01, 2014.
    53. ASTM C191 - 13, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM Committee C01, 2013.
    54. Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F. and Neubauer, J. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research 42: 1389-1400. 2012.
    55. Behnood, A., Tittelboom, K. V. and Belie, N. D. Methods for measuring pH in concrete: A review. Construction and Building Materials 105: 176-188. 2015.
    56. Cement Concrete and Aggregates Australia, Drying Shrinkage of Cement and Concrete, Technical Publications, 2002.
    57. ASTM C157/C157M - 17, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM Committee C09, 2017.
    58. Wikipedia, Ultrasonic pulse velocity test, 2017, https://en.wikipedia.org/wiki/Ultrasonic_pulse_velocity_test, (Last accessed 5 December 2017)
    59. ASTM C597 - 16, Standard Test Method for Pulse Velocity Through Concrete, ASTM Committe C09, 2016.
    60. Bahr, O., Schaumann, P., Bollen, B. and Bracke, J. Young's modulus and Poisson's ratio of concrete at high temperatures: Experimental investigations. Materials and Design 45: 421-429. 2012.
    61. ASTM E1876 - 15, Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, ASTM Committee E28, 2015.
    62. Rao, G. A. Generalization of Abrams' law for cement mortars. Cement and Concrete Research 31: 495-502. 2000.
    63. ACI 211.4R-08, Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials, ACI Committee 211, 2008.

    QR CODE