簡易檢索 / 詳目顯示

研究生: 林瑋倫
Wei-lun Lin
論文名稱: 鹼激發爐石基膠體工程性質之研究
Study on Engineering Properties of Alkali-Activated Slag Pastes
指導教授: 張大鵬
Ta-peng Chang
陳君弢
Chun-tao Chen
口試委員: 林宜清
Yi-ching Lin
王仲宇
Chung-yue Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 131
中文關鍵詞: 無機聚合物田口分析方法熱傳導係數
外文關鍵詞: geopolymer, Taguchi method, thermal conductivity
相關次數: 點閱:406下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以爐石為主體製成無機聚合物,改變液固比與鹼激發劑量來探討新拌與硬固漿體之基本工程性質,並利用X光繞射分析與掃描式電子顯微鏡觀察其微觀結構,最後再以田口分析法探討不同SiO2/Na2O、SiO2/Al2O3與Na2O/H2O成份比例對於其抗壓強度、動態彈性模數與熱傳導係數之影響,以做為未來配比設計之參考。
    研究結果顯示:(1) 無機聚合物之工作性除了隨液固比增加而提高外,亦與鹼激發劑量有關。在液固比為0.5時,當鹼激發劑量由1%提高至3%時,流度值從95%增加至150%。(2) 以爐石基製成之無機聚合物其凝結時間易受到鹼激發劑量的影響。研究結果顯示,鹼激發劑量較高時,凝結時間大幅縮短。此外,增加鹼金屬矽酸鈉溶液的用量可利用其水分降低鹼激發劑之濃度,亦可達到緩凝之效果。(3) 在不同液固比下,使用低液固比可得到較高之動態彈性、動態剪力模數與超音波速,但所得到之熱傳導係數亦較高。另一方面,抗壓強度試驗結果顯示,液固比與鹼激發劑量兩者皆會影響聚合發展,參與聚合反應之成份過與不及皆無法達到最佳之工程性質。(4)無機聚合物之抗壓強度方面最高可達到166.32 MPa,但劈裂強度最高卻只有5.25 MPa,僅為抗壓強度之3.2%,這顯示出無機聚合物之抗張能力不足。(5) 由X光繞射分析之結果得知,以爐石基製成之無機聚合物多為非晶相之玻璃質結構。(6) 由田口法分析之結果得知,Na2O/H2O、SiO2/Na2O與SiO2/Al2O3為早期抗壓強度、動態彈性模數與熱傳導係數之顯著因子,其貢獻度分別為53.13%、82.61%與60.77%。然而,晚期之抗壓強度、動態彈性模數與熱傳導係數皆以SiO2/Na2O為顯著因子,亦即鹼激發劑量不足以激發爐石粉之活性,或是金屬矽酸鈉溶液不足以形成較佳之鍵結,長期工程性質便會降低。


    This study explored the mechanical properties and microstructure of the slag-based geopolymer prepared with different liquid-solid ratios and amount of alkaline solutions. The influences of Na2O/H2O, SiO2/Na2O, and SiO2/Al2O3 on the mechanical properties of geopolymer were analyzed by the Taguchi method, whereas its microstructure was detected by X-ray diffraction and observed using scanning electron microscope.
    The present study identified several major findings. First, the workability was increased by both the increases of the liquid-solid ratio and the amount of alkaline solution. With liquid-solid ratio of 0.5, the flow was increased from 95% to 150% as the addition of alkaline solution was increased from 1% to 3%. Second, the setting time was greatly influenced by the amount of the alkaline solution. The more addition of the alkaline solution was, the shorter the setting time was. On the other hand, retarded setting could be achieved by increasing the addition of sodium silicate solution because the alkaline solution could be diluted. Third, specimens with lower liquid-solid ratio had higher dynamic modulus of elasticity, dynamic modulus of rigidity, ultrasonic pulse velocity, and coefficients of thermal conductivity. However, the compressive strengths were controlled by both the liquid-solid ratio and the amount of the alkaline solution, suggesting that an optimum addition of the reactants in the geopolymerization was essential in order to make the ones with good mechanical properties. Fourth, the highest compressive strength was 166.32 MPa while the splitting tensile strength was 5.25 MPa, only 3.2% of the compressive strength, implying that the geopolymer did not have strong tensile strength. Fifth, the geopolymer was amorphous, as detected by X-ray diffraction. Finally, the Na2O/H2O, SiO2/Na2O, and SiO2/Al2O3 were significant factors of the early compressive strength, dynamic modulus of elasticity, and the coefficient of thermal conductivity, as analyzed using Taguchi method. The contributions of each factor were 53.13%, 82.61% and 60.77%, respectively. The SiO2/Na2O, however, was the only significant factor of the long-term compressive strength, dynamic modulus of elasticity, and coefficient of thermal conductivity, suggesting that the long-term mechanical properties could be reduced either by the insufficient alkaline solution that cannot activate the slag or the insufficient sodium silicate solution that cannot induce good bondings in geopolymer.

    總目錄 中文摘要 英文摘要 致謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究內容及流程 第二章 文獻回顧 2.1 無機聚合物之發展歷程 2.2 無機聚合物之成形機制 2.2.1 反應原理與機制 2.2.2 無機聚合物之整體結構 2.3 選用原料對於聚合作用之影響 2.3.1 爐石粉 2.3.2 鹼性激發劑之種類與濃度 2.3.3 鹼金屬矽酸鹽溶液之種類 2.4 影響無機聚合物硬固及特性之因素 2.4.1 不同液固比之影響 2.4.2 不同化合物比例之影響 2.4.3 養護溫度與時間之影響 2.5 無機聚合物之應用 2.5.1 應用於土木工程 2.5.2 重金屬處理 2.5.3 其它 2.6 田口分析方法 2.6.1 田口法簡介 2.6.2 田口法實驗流程 第三章 試驗計畫 3.1 實驗內容與流程 3.2 實驗材料 3.3 實驗儀器設備 3.4 實驗變數與項目 3.5 無機聚合物拌合與施作 3.5.1 無機聚合物拌合過程 3.6 試驗方法 3.6.1 凝結時間試驗 3.6.2 坍流度試驗 3.6.3 抗壓強度試驗 3.6.4 劈裂強度試驗 3.6.5 動態彈性模數與動態剪力模數 3.6.6 超音波波速檢測 3.6.7 熱傳導係數檢測 第四章 結果與討論 4.1 無機聚合物漿體之新拌性質 4.1.1 工作性 4.1.2 凝結時間 4.2 無機聚合物漿體之硬固性質 4.2.1 抗壓強度 4.2.2 劈裂強度 4.2.3 動態彈性模數與動態剪力模數 4.2.4 超音波波速 4.2.5 熱傳導係數 4.3 無機聚合物漿體微觀結構分析 4.3.1 X光繞射分析結果 4.3.2 掃描式電子顯微鏡之結構觀察 4.4 田口方法分析結果 4.4.1 S/N因子水準表分析結果及最佳配比組合 4.4.2 變異數分析表(ANOVA) 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    1.H. Zhou, X. Wu, Z. Xu, M. Tang, “Kinetic study on hydration of alkali-activated slag”, Cement and Concrete Research, Vol. 23, pp.1253-1258, 1993.
    2.邱俊萍,「利用高爐爐渣製成無機聚合材料之研究」,碩士論文,國立台北科技大學,2006。(鄭大偉教授指導)
    3.J. Davidovits, “Global warming impact on the cement and aggregates industries”, Published in world resource review, Vol. 6, No.2, 1994.
    4.P. Duxson, J. L. Provis, G. C. Lukey, J. S.J. V. Deventer, “The role of inorganic polymer technology in the development of green concrete”, Cement and Concrete Research, Vol. 37, pp. 1590-1597, 2007.
    5.J. W. Phair, J. S. J. Van Deventer, J. D. Smith, “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers”, Applied Geochemistry, Vol. 19, pp. 423-434, 2004.
    6.金漫彤, “土壤聚合物固化重金屬技術及終產物研究”, 碩士論文,浙江大學, 2005
    7.C. Shi Shi, P. V. Krivenko, D. Roy, “Alkali-Activated Cements and Concrete”, Taylor & Francis, London and New York, 2006.
    8.D. M. Roy, “Alkali-activated cements: opportunities and challenges”, Cement and Concrete Research, Vol. 29, No.2, pp.249-254, 1999.
    9.H. Xu, “Geopolymerisation of aluminosilicate minerals”, Ph.D. Thesis, the University of Melbourne, Australia, 2002.
    10.H. Xu, J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals”, International Journal Minerals Process, Vol. 59, pp. 247-266, 2000.
    11.H. Xu, and J. S. J. Van Deventer, G. C. Lukey, “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures”, Industrial Engineering Chemical Research, Vol. 40, pp. 3749-3756, 2001.
    12.李元凱,「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學,2008。(張大鵬教授指導)
    13.H. Xu, J. S. J. Van Deventer, “The geopolymerisation of natural alumino-silicates.”, Proceedings of Geopolymere 99 Second International Conference, Editors: J. Davidovits, R. Davidovits and C. James, Institut Géopolymère, Saint-Quentin, France, pp. 43-64, 1999.
    14.J. Davidovits, “Chemistry of geopolymeric systems terminology. Proceedings of Geopolymere 99 Second International Conference”, Editors: Joseph Davidovits, Ralph Davidovits and Claude James, Institut Géopolymère, Saint-Quentin, France, pp. 9-40, 1999.
    15.P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo and J. S. J. van Deventer, “Geopolymer technology: the current state of the art”, Journal of Material Science, Vol. 42, pp. 2917-2933, 2007.
    16.V. F. F. Barbosa, K. J. D. MacKenzie, C. Thaumaturgo, “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, International Journal of Inorganic Materials, Vol. 2, pp. 309-317, 2000.
    17.J. Davidovits, “Geopolymer chemistry and sustainable development. The poly(sialate) terminology : a very useful and simple model for the promotion and understanding of green-chemistry.”, Geopolymer, Green Chemistry and Sustainable Development Solutions, Editors: J. Davidovits, Institut Géopolymère, Saint-Quentin, France, pp. 9-15, 2005.
    18.I. Maragkos, I. P. Giannopoulou, D. Panias, “Synthesis of ferronickel slag-based geopolymers”, Minerals Engineering, Vol.22, pp.196-203, 2009.
    19.陳俊欽,「爐石取代部分水泥對流動性混凝土質流性質與工作性之影響」,碩士論文,國立中興大學,2002。(顏聰教授指導)
    20.黃兆龍,「高性能混凝土理論與實務」,詹氏書局,2003年。
    21.A. Palomo, M. W. Grutzeck, M. T. Blanco, “Alkali-activated fly ashes A cement for the future”, Cement and Concrete Research, Vol.29, pp.1323-1329, 1999.
    22.曾偉林,「鹼活化爐石粉基質材料製程與基本特性之探討」,碩士論文,國立台灣海洋大學,2001。(張建智教授指導)
    23.F. Puertas, M. Palacios, A. Gil-Maroto, T. Vázquez, “Alkali-aggregate behaviour of alkali-activated slag mortars: effect of aggregate type”, Cement & Concrete Composites, doi: 10.1016, 2009.
    24.J. W. Phair, J. S. J. Van Deventer, “Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process, Vol. 66, pp. 121-143, 2002.
    25.K. Komnitsas, D. Zaharaki, V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers”, Journal of Hazardous Materials, Vol.161, pp. 760-768, 2009.
    26.A. R. Brough, M. Holloway, J. Sykes, A. Atkinson, “Sodium silicate-based alkali-activated slag mortars Part II. The retarding effect of additions of sodium chloride or malic acid”, Cement and Concrete Research, Vol. 30, pp. 1375-1379, 2000.
    27.朱純熙、盧晨,「水玻璃硬化的認識過程」,無機鹽工業,上海,第三十三卷,第一期,第22-25頁,2001。
    28.付興華、陶文宏、孫鳳金,「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁,2008。
    29.J. G. S. Van Jaarsveld and J. S. J. Van Deventer, “Effect of the alkali metal activator on the properties of fly ash-based geopolymers”, Industrial Engineering Chemical Research, Vol. 38, pp. 3932-3941, 1999.
    30.J. G. S. Van Jaarsveld and J. S. J. Van Deventer, “The effect of metal contaminants on the formation and properties of waste-based geopolymers”, Cement and Concrete Research 29, pp. 1189-1200, 1999.
    31.A. Fernández-Jiménez, J. G. Palomo, F. Puertas, “Alkali-activated slag mortars mechanical strength behaviour”, Cement and Concrete Research Vol. 29 ,pp.1313-1321,1999.
    32.J. W. Phair and J. S. J. Van Deventer, “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers”, Minerals Engineering, Vol. 14, pp. 289-304, 2001.
    33.馬鴻文、凌發科、楊靜、王剛,「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576-583頁,2002。
    34.鄭娟榮,周同和,劉麗娜,「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064-1067頁,2007。
    35.P. D. Silva, K. Sagoe-Crenstil, V. Sirivivatnanon, “Kinetics of geopolymerization: Role of Al2O3 and SiO2”, Cement and Concrete Research, Vol.37, pp. 512-518, 2007.
    36.T. Bakharev, J.G. Sanjayan, Y. B. Cheng, “Effect of elevated temperature curing on properties of alkali-activated slag concrete”, Cement and Concrete Research, Vol.29, pp. 1619-1625, 1999.
    37.D. L.Y. Kong, J. G. Sanjayan, “Damage behavior of geopolymer composites exposed to elevated temperatures”, Cement and Concrete Composites, Vol.30, pp. 986-991, 2008.
    38.J. C. Swanepoel, C. A. Strydom, “Utilisation of fly ash in a geopolymeric material”, Applied Geochemistry, Vol.17, pp. 1143-1148, 2002.
    39.戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,國立台北科技大學,2005。(鄭大偉教授指導)
    40.J. Davidovits, “Geopolymer chemistry and applications”, Editors: J. Davidovits, Institut Géopolymère, Saint-Quentin, France, pp. 384-385, 2008.
    41.J. Davidovits, “Fire proof Geopolymeric cement”, Editors: J. Davidovits, Cordi-Géopolymère SA, St. Quentin, France, pp. 165-170, 1999.
    42.林孟曄,「利用燃煤底灰製成無機聚合材料之研究」,碩士論文,國立台北科技大學,2006。(鄭大偉教授指導)
    43.J.G.S. V. Jaarsveld, J.S.J. Van Deventer, L. Lorenzen, “The potential use of geopolymeric materials to immobilize toxic metals : part I. Theory and applications”, Minerals Engineering, Vol. 10, No.7, pp. 659-669, 1997.
    44.W. K. W. Lee, J.S.J. Van Deventer, “The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements”, Cement and Concrete Research, Vol.32, No.4, pp. 577-584, 2002.
    45.J. M. Miranda, A. Fernández-Jiménez, J. A. González, A.Palomo, “Corrosion resistance in activated fly ash mortars”, Cement and Concrete Research, Vol.35, No.6, pp. 1210-1217, 2005.
    46.Y. Muntingh, “Durability and Diffusive Behaviour Evaluation of Geopolymeric Material”, M.Sc. Thesis, University of Stellenbosch, South Africa, 2006.
    47.J. W. Phair, J. S. J. Van Deventer, J. D. Smith, “Mechanism of Polysialation in the Incorporation of Zirconia into Fly Ash-Based Geopolymers”, Industrial Engineering Chemistry Research, Vol. 39, pp. 2925-2934, 2000.
    48.田耀遠,「田口法應用於混凝土配比設計及交互作用之研究」,博士論文,國立台灣科技大學,2004。(林耀煌教授指導)
    49.周宗億,「射出/壓縮成型加工參數對成品機械性質之最適化設計」,碩士論文,國立中央大學,2005。(洪勵吾教授指導)
    50.張季娜,羅仕勇,宋振昌,蔡彰文,陳世璉,莊泰旭,邱鎮宏,高述崙譯,「田口式品質工程導論」,校定:鍾清章,中華民國品質學會,台北,初版八刷,2003。
    51.R. A. Helmuth, “Water-Reducing Properties of fly ash in Cement Pastes, Mortars, and Concrete : Causes and Test Methods”, ACI SP-91, Vol.1, pp. 723-740, 1986.
    52.李輝煌,「田口方法品質設計的原理與實務」,台北,高立圖書有限公司,第三版,2008。
    53.蒲心誠,楊長輝,「高強鹼爐渣流態混凝土研究」,混凝土,pp. 18-30,1994。
    54.B. Talling, J. Brandstetr, “Present State and Future of Alkali-Activated Slag Concretes”, Special Publication, Vol.114, pp. 1519-1946, 1989.
    55.A.R. Brough, M. Holloway, J. Sykes, A. Atkinson, “Sodium silicate-based alkali-activated slag mortars Part II. The retarding effect of additions of sodium chloride or malic acid”, Cement and Concrete Research, Vol.30, pp. 1375-1379,2000.
    56.C. Gong, N. Yang, “Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material”, Cement and Concrete Research, Vol.30, pp. 1013-1016, 2000.

    QR CODE