簡易檢索 / 詳目顯示

研究生: Hoang-Anh Nguyen
Hoang-Anh Nguyen
論文名稱: 三相生態膠結材料之工程性質研究
Study on Engineering Properties of Cementitious Ternary Eco-Binder
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 楊仲家
Chung-Chia Yang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 94
中文關鍵詞: CFBC飛灰飛灰爐石粉工程性質水化產物耐久性
外文關鍵詞: CFBC fly ash, Fly ash, Slag, Mechanical performance, Hydration products, Durability
相關次數: 點閱:278下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以混合爐石粉(GGBFS)、F級飛灰及CFB飛灰(CFBC)等工業固態廢棄物製成一三相生態膠結材料(SFC膠結材),材料組合為使用CFB飛灰作為激發爐石與飛灰之主要激發劑,其用量占整體10~25%(重量比),並變化F級飛灰與爐石粉重量比例(0/100、10/90、30/70及50/50),探討飛灰添加量變化對於三相生態膠結材漿體與砂漿在工程性質、微結構與耐久性質之影響。漿體試驗結果顯示:由抗壓強度試驗結果指出,CFB飛灰與F級飛灰使用量分別為15~20%及10~30%(重量比)為最佳混合比例範圍,其強度較未使用F級飛灰組別高。其水化硬固機制為當CFB飛灰與水混合產生鹼質環境激發爐石粉產生水化反應,在水化過程中所產生熱量可促成F級飛灰產生卜作嵐反應,提升材料性能。水化生成物方面,藉由掃瞄電子顯微鏡及X光粉體繞射分析結果顯示SFC膠結材料之主要水化產物為鈣礬石(AFt)及C-A-S-H膠體。此外,相較於普通波特蘭水泥,SFC膠結材有較長之初凝與終凝時間及低水化放熱之特性。在砂漿試驗結果顯示,SFC膠結材砂漿具有使用於結構體之潛力,且其水膠比(W/B)、養護機制與F級飛灰添加量對於砂漿之工程與耐久性質有明顯之影響。新拌工作性能方面,在最佳粉體配比組別因其良好之材三相材料粒徑分佈,因此有較佳之工作性質表現;另在相同工作性表現下,SFC膠結材砂漿之強度表現與膨脹性質和普通波特蘭水泥相似。耐久性方面,在所有試驗組中,SFC膠結材砂漿其因有混合F級飛灰,故在對於硫酸鹽侵蝕之抵抗能力優於普通波特蘭水泥砂漿。


    The current study aims to investigate the mechanical performance, microstructural examination, and durability of paste and mortar made by a cementitious ternary eco-binder, denoted by SFC binder, which is made by blended industrial solid waste of ground granulated blast furnace slag (GGBFS), Type F fly ash (FA), and circulating fluidized bed combustion (CFBC) fly ash. Specimens with four FA/GGBFS weight ratios (0/100, 10/90, 30/70, and 50/50) are prepared to estimate the effects of FA on the mechanical, microstructure, and durability performances. CFBC fly ash, around 10-25 wt.% of the mixture, is used as the main activator. The results show that the optimum mixtures are prepared by 15-20 wt.% CFBC fly ash and 10-30 wt.% FA. They have higher compressive strengths than those without FA. The early hydration of CFBC fly ash and GGBFS provides sufficient alkalis and releases heat, both of which play a crucial role in the pozzolanic reaction of FA particles. The main hydration products in the mixtures are ettringite (AFt) and calcium aluminum silicate hydrate (C-A-S-H) gel, as examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the comparison with ordinary Portland cement (OPC), the SFC pastes illustrate the longer initial and final setting times. During hydration process, the heat evolution of SFC pastes is significant lower than that of the OPC pastes. The SFC mortars can meet the requirements for infrastructure construction. The water to binder ratio (W/B), curing regime, and FA addition significantly affect the engineering performances and durability of the SFC mortars. In this study, the SFC mortars have the higher workability because of the optimized particle distribution. The SFC mortars, prepared with the optimum mix proportions, can have the compressive strengths and expansions comparable to the OPC mortars with similar workability. At all the W/B, the SFC mortars illustrate the superior sulfate resistance to that of the OPC mortars. The increase in FA addition can be encouraged to improve the sulfate resistance of the SFC mortars.

    摘要 i Abstract iii Acknowledgements v Contents vi List of tables viii List of figures ix Chapter 1 Significance of Research 1 Chapter 2 Introduction 4 2.1. Literature review 4 2.1.1. Circulating fluidized bed combustion (CFBC) technique and the utilization of CFBC fly ashes 4 2.1.2. The utilization of ground granulated blast furnace slag (GGBFS) and coal combustion fly ash (FA) in supplementary cementitious material (SCM) 7 2.1.3. The utilization of ground granulated blast furnace slag (GGBFS) and coal combustion fly ash (FA) in alkali activated material (AAM) 9 2.1.4. The utilization of ground granulated blast furnace slag (GGBFS) and coal combustion fly ash (FA) in sulfate activated material (SAM) 12 2.1.5. The utilization of sulfur rich solid wastes as replacement for commercial sulfate in SAM 14 2.2. Significances 16 2.3. Outline 16 Chapter 3 Experimental Program 18 3.1. Materials and mix proportions 18 3.1.1. Materials 18 3.1.2. Mix proportions 18 3.2. Mixing, casting and test methods 19 3.2.1. Workability 20 3.2.2. Setting time 21 3.2.3. Hydration heat 21 3.2.4. Compressive strength 22 3.2.5. Drying shrinkage 24 3.2.6. Dynamic and shear moduli 25 3.2.7. Ultrasonic pulsevelocity (UPV) 26 3.2.8. SEM/EDS and XRD 27 3.2.9. Sulfate resistance 28 Chapter 4 Results and discussion 40 4.1. Microstructures and mechanical performances of the SFC pastes and optimization analyses 40 4.1.1. Microstructural examinations on hydration products of SFC binder 40 4.1.2. Setting time and hydration heat 41 4.1.3. Compressive strength 43 4.1.4. Analysis for optimal mixture 44 4.2. Engineering performances and durability properties of the SFC mortars 45 4.2.1. Workability 45 4.2.2. Compressive strength 46 4.2.3. Dynamic elastic and shear moduli 48 4.2.4. Ultrasonic pulse velocity (UPV) 48 4.2.5. Shrinkage/expansion 49 4.2.6. Sulfate resistance 51 Chapter 5 Conclusions 72 References 74

    [1] Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cement and Concrete Research. 2011;41(12):1232-43.
    [2] Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM. Sustainable development and climate change initiatives. Cement and Concrete Research. 2008;38(2):115-27.
    [3] Baghabra Al-Amoudi OS. Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites. 2002;24(3–4):305-16.
    [4] Bertron A, Duchesne J, Escadeillas G. Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites. 2005;27(9–10):898-909.
    [5] Gruyaert E, Van den Heede P, Maes M, De Belie N. Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research. 2012;42(1):173-85.
    [6] Havlica J, Brandstetr J, Odler I. Possibilities of Utilizing Solid Residues from Pressured Fluidized Bed Coal Combustion (PSBC) for the Production of Blended Cements. Cement and Concrete Research. 1998;28(2):299-307.
    [7] Anthony EJ. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Progress in Energy and Combustion Science. 1995;21(3):239-68.
    [8] Anthony EJ, Granatstein DL. Sulfation phenomena in fluidized bed combustion systems. Progress in Energy and Combustion Science. 2001;27(2):215-36.
    [9] Anthony EJ, Jia L, Wu Y. CFBC ash hydration studies. Fuel. 2005;84(11):1393-7.
    [10] Sheng G, Li Q, Zhai J. Investigation on the hydration of CFBC fly ash. Fuel. 2012;98(0):61-6.
    [11] Li X-g, Chen Q-b, Ma B-g, Huang J, Jian S-w, Wu B. Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics. Fuel. 2012;102(0):674-80.
    [12] Lee ST, Moon HY, Swamy RN, Kim SS, Kim JP. Sulfate Attack of Mortars Containing Recycled Fine Aggregates. Materials Journal. 2005;102(4):224-30.
    [13] Rust D, Rathbone R, Mahboub KC, Robl T. Formulating Low-Energy Cement Products. Journal of Materials in Civil Engineering. 2012;24(9):1125-31.
    [14] Salain IMAK, Clastres P, Bursi JM, Pellissier C. Circulating Fluidized Bed Combustion Ashes as an Activator of Ground Vitrified Blast Furnace Slag. Special Publication. 2001;202:225-44.
    [15] Zhao F-Q, Ni W, Wang H-J, Liu H-J. Activated fly ash/slag blended cement. Resources, Conservation and Recycling. 2007;52(2):303-13.
    [16] Zhong S, Ni K, Li J. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Waste management. 2012;32(7):1468-72.
    [17] Bijen J, Niel E. Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries. Cement and Concrete Research. 1981;11(3):307-22.
    [18] Dutta DK, Borthakur PC. Activation of low lime high alumina granulated blast furnace slag by anhydrite. Cement and Concrete Research. 1990;20(5):711-22.
    [19] Gruskovnjak A, Lothenbach B, Winnefeld F, Figi R, Ko SC, Adler M, et al. Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research. 2008;38(7):983-92.
    [20] Midgley HG, Pettifer K. The micro structure of hydrated super sulphated cement. Cement and Concrete Research. 1971;1(1):101-4.
    [21] Singh M, Garg M. Calcium sulfate hemihydrate activated low heat sulfate resistant cement. Construction and Building Materials. 2002;16(3):181-6.
    [22] Singh M, Garg M. Durability of cementing binders based on fly ash and other wastes. Construction and Building Materials. 2007;21(11):2012-6.
    [23] Shon C-S, Mukhopadhyay AK, Saylak D, Zollinger DG, Mejeoumov GG. Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture. Construction and Building Materials. 2010;24(5):839-47.
    [24] Xia Y, Yan Y, Hu Z. Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production. Construction and Building Materials. 2013;47(0):1461-7.
    [25] Zhang Z, Qian J, You C, Hu C. Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Construction and Building Materials. 2012;35(0):109-16.
    [26] Boonserm K, Sata V, Pimraksa K, Chindaprasirt P. Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cement and Concrete Composites. 2012;34(7):819-24.
    [27] Li Q, Xu H, Li F, Li P, Shen L, Zhai J. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel. 2012;97(0):366-72.
    [28] Sujjavanich S, Sida V, Suwanvitaya P. Chloride Permeability and Corrosion Risk of High-Volume Fly Ash Concrete with Mid-Range Water Reducer. Materials Journal. 2005;102(3):177-82.
    [29] Poon CS, Lam L, Wong YL. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research. 2000;30(3):447-55.
    [30] Langley WS, Carette GG, Malhotra VM. Structural Concrete Incorporating High Volumes of ASTM Class F Fly Ash. Materials Journal. 1989;86(5):507-14.
    [31] Chindaprasirt P, Chotithanorm C, Cao HT, Sirivivatnanon V. Influence of fly ash fineness on the chloride penetration of concrete. Construction and Building Materials. 2007;21(2):356-61.
    [32] Bijen J. Benefits of slag and fly ash. Construction and Building Materials. 1996;10(5):309-14.
    [33] Aimin X, Sarkar SL. Microstructural study of gypsum activated fly ash hydration in cement paste. Cement and Concrete Research. 1991;21(6):1137-47.
    [34] Ravina D, Mehta PK. Properties of fresh concrete containing large amounts of fly ash. Cement and Concrete Research. 1986;16(2):227-38.
    [35] Yen T, Hsu T-H, Liu Y-W, Chen S-H. Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete. Construction and Building Materials. 2007;21(2):458-63.
    [36] Bilodeau A, Malhotra VM. High-Volume Fly Ash System: Concrete Solution for Sustainable Development. Materials Journal. 2000;97(1):41-8.
    [37] Carette G, Bilodeau A, Chevrier RL, Malhotra VM. Mechanical Properties of Concrete Incorporating High Volumes of Fly Ash From Sources in the U.S. Materials Journal. 1993;90(6):535-44.
    [38] Malhotra VM. Superplasticized Fly Ash Concrete for Structural Applications. Concrete International. 1986;8(12):28-31.
    [39] Malhotra VM. Durability of concrete incorporating high-volume of low-calcium (ASTM Class F) fly ash. Cement and Concrete Composites. 1990;12(4):271-7.
    [40] Nassar R-U-D, Soroushian P, Ghebrab T. Field investigation of high-volume fly ash pavement concrete. Resources, Conservation and Recycling. 2013;73:78-85.
    [41] Naik TR, Ramme BW, Kraus RN, Siddique R. Long-Term Performance of High-Volume Fly Ash Concrete Pavements. Materials Journal. 2003;100(2):150-5.
    [42] Donatello S, Kuenzel C, Palomo A, Fernandez-Jimenez A. High temperature resistance of a very high volume fly ash cement paste. Cement and Concrete Composites. 2014;45:234-42.
    [43] Obla KH, Hill RL, Martin RS. HVFA Concrete—An Industry Perspective. Concrete International. 2003;25(8):29-34.
    [44] Zhu Y, Yang Y, Yao Y. Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction and Building Materials. 2012;36:1076-81.
    [45] Paya J, Monzo J, Borrachero MV, Peris-Mora E, Gonzalez-Lopez E. Mechanical treatment of fly ashes part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars. Cement and Concrete Research. 1996;26(2):225-35.
    [46] Paya J, Monzo J, Borrachero MV, Peris E, Gonzalez-Lopez E. Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA) — Cement mortars. Cement and Concrete Research. 1997;27(9):1365-77.
    [47] Maltais Y, Marchand J. INFLUENCE OF CURING TEMPERATURE ON CEMENT HYDRATION AND MECHANICAL STRENGTH DEVELOPMENT OF FLY ASH MORTARS. Cement and Concrete Research. 1997;27(7):1009-20.
    [48] Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research. 2004;34(6):1043-9.
    [49] Elkhadiri I, Diouri A, Boukhari A, Aride J, Puertas F. Mechanical behaviour of various mortars made by combined fly ash and limestone in Moroccan Portland cement. Cement and Concrete Research. 2002;32(10):1597-603.
    [50] Qian J, Shi C, Wang Z. Activation of blended cements containing fly ash. Cement and Concrete Research. 2001;31(8):1121-7.
    [51] Poon CS, Qiao XC, Lin ZS. Effects of flue gas desulphurization sludge on the pozzolanic reaction of reject-fly-ash-blended cement pastes. Cement and Concrete Research. 2004;34(10):1907-18.
    [52] Poon CS, Kou SC, Lam L, Lin ZS. Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cement and Concrete Research. 2001;31(6):873-81.
    [53] Lee CY, Lee HK, Lee KM. Strength and microstructural characteristics of chemically activated fly ash–cement systems. Cement and Concrete Research. 2003;33(3):425-31.
    [54] Donatello S, Fernandez-Jimenez A, Palomo A. Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator. Journal of the American Ceramic Society. 2013;96(3):900-6.
    [55] Ortega JM, Sanchez I, Climent MA. Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions. Construction and Building Materials. 2012;27(1):176-83.
    [56] Sajedi F, Razak HA, Mahmud HB, Shafigh P. Relationships between compressive strength of cement–slag mortars under air and water curing regimes. Construction and Building Materials. 2012;31(0):188-96.
    [57] Hale WM, Freyne SF, Bush Jr TD, Russell BW. Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Construction and Building Materials. 2008;22(9):1990-2000.
    [58] Chen H-J, Huang S-S, Tang C-W, Malek MA, Ean L-W. Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study. Construction and Building Materials. 2012;35(0):1063-70.
    [59] Barnett SJ, Soutsos MN, Millard SG, Bungey JH. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement and Concrete Research. 2006;36(3):434-40.
    [60] Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research. 2002;32(6):865-79.
    [61] Fernandez-Jimenez A, Palomo JG, Puertas F. Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research. 1999;29(8):1313-21.
    [62] Bakharev T, Sanjayan JG, Cheng YB. Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research. 2000;30(9):1367-74.
    [63] Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research. 2000;30(9):1401-6.
    [64] Palacios M, Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cement and Concrete Research. 2007;37(5):691-702.
    [65] Melo Neto AA, Cincotto MA, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cement and Concrete Research. 2008;38(4):565-74.
    [66] Chang JJ, Yeih W, Hung CC. Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement and Concrete Composites. 2005;27(1):85-91.
    [67] Abdullah A. The effect of various chemical activators on pozzolanic reactivity: A review. Scientific Research and Essays. 2012;7(7).
    [68] Bakharev T. Resistance of geopolymer materials to acid attack. Cement and Concrete Research. 2005;35(4):658-70.
    [69] He J, Zhang J, Yu Y, Zhang G. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials. 2012;30:80-91.
    [70] Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel. 2011;90(6):2118-24.
    [71] Kovalchuk G, Fernandez-Jimenez A, Palomo A. Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II. Fuel. 2007;86(3):315-22.
    [72] Muniz-Villarreal MS, Manzano-Ramirez A, Sampieri-Bulbarela S, Gasca-Tirado JR, Reyes-Araiza JL, Rubio-Avalos JC, et al. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters. 2011;65(6):995-8.
    [73] Nazari A, Bagheri A, Riahi S. Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering: A. 2011;528(24):7395-401.
    [74] Olivia M, Nikraz H. Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design. 2012;36:191-8.
    [75] Demie S, Nuruddin MF, Shafiq N. Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete. Construction and Building Materials. 2013;41:91-8.
    [76] Elimbi A, Tchakoute HK, Njopwouo D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials. 2011;25(6):2805-12.
    [77] Temuujin J, Minjigmaa A, Lee M, Chen-Tan N, van Riessen A. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cement and Concrete Composites. 2011;33(10):1086-91.
    [78] Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construction and Building Materials. 2008;22(7):1315-22.
    [79] Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research. 1999;29(8):1323-9.
    [80] Hanjitsuwan S, Hunpratub S, Thongbai P, Maensiri S, Sata V, Chindaprasirt P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cement and Concrete Composites. 2014;45(0):9-14.
    [81] Islam A, Alengaram UJ, Jumaat MZ, Bashar II. The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design. 2014;56(0):833-41.
    [82] Zhang Z, Wang H, Zhu Y, Reid A, Provis JL, Bullen F. Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science. 2014;88–89(0):194-201.
    [83] Chi M, Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials. 2013;40:291-8.
    [84] Duran Atiş C. Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cement and Concrete Research. 2005;35(6):1112-21.
    [85] Nath SK, Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Construction and Building Materials. 2013;38:924-30.
    [86] Rattanasak U, Pankhet K, Chindaprasirt P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int J Miner Metall Mater. 2011;18(3):364-9.
    [87] Shariq M, Prasad J, Masood A. Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials. 2013;40(0):944-50.
    [88] Dung N, Chang T, Yang T. Performance evaluation of an eco-binder made with slag and CFBC fly ash. Journal of Materials in Civil Engineering.0(ja):null.
    [89] Li D, Shen J, Chen Y, Cheng L, Wu X. Study of properties on fly ash–slag complex cement. Cement and Concrete Research. 2000;30(9):1381-7.
    [90] Givi AN, Rashid SA, Aziz FNA, Salleh MAM. Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials. 2010;24(11):2145-50.
    [91] Lin Y-H, Tyan Y-Y, Chang T-P, Chang C-Y. An assessment of optimal mixture for concrete made with recycled concrete aggregates. Cement and Concrete Research. 2004;34(8):1373-80.
    [92] RILEM119-TCE. TCE1: Adiabatic and semi-adiabatic calorimetry to determine the temperature increase in concrete due to hydration heat of the cement. Mat Struct. 1997;30(8):451-64.
    [93] Mehrotra VP, Sai ASR, Kapur PC. Plaster of Paris activated supersulfated slag cement. Cement and Concrete Research. 1982;12(4):463-73.
    [94] Singh M, Garg M. Activation of gypsum anhydrite-slag mixtures. Cement and Concrete Research. 1995;25(2):332-8.
    [95] Singh M, Garg M. Investigation of a durable gypsum binder for building materials. Construction and Building Materials. 1992;6(1):52-6.
    [96] Jain A, Kathuria A, Kumar A, Verma Y, Murari K. Combined Use of Non-Destructive Tests for Assessment of Strength of Concrete in Structure. Procedia Engineering. 2013;54(0):241-51.
    [97] Andersen MD, Jakobsen HJ, Skibsted J. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research. 2004;34(5):857-68.
    [98] Pardal X, Pochard I, Nonat A. Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cement and Concrete Research. 2009;39(8):637-43.
    [99] Thomas JJ, Rothstein D, Jennings HM, Christensen BJ. Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes. Cement and Concrete Research. 2003;33(12):2037-47.
    [100] Richardson IG. The nature of C-S-H in hardened cements. Cement and Concrete Research. 1999;29(8):1131-47.
    [101] Anthony EJ, Iribarne AP, Iribarne JV. Study of Hydration During Curing of Residues From Coal Combustion With Limestone Addition. Journal of Energy Resources Technology. 1997;119(2):89-95.
    [102] Sheng G, Zhai J, Li Q, Li F. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel. 2007;86(16):2625-31.
    [103] Lorenzo MP, Goni S, Guerrero A. Activation of Pozzolanic Reaction of Hydrated Portland Cement Fly Ash Pastes in Sulfate Solution. Journal of the American Ceramic Society. 2002;85(12):3071-5.
    [104] Sahmaran M, Kasap O, Duru K, Yaman IO. Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cement and Concrete Composites. 2007;29(3):159-67.

    無法下載圖示 全文公開日期 2019/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE