簡易檢索 / 詳目顯示

研究生: 高玉荃
Yu-Chuan Kao
論文名稱: 含飛灰之SBR水泥砂漿補修材料性能之試驗研究
Experimental investigation on properties of SBR-modified mortar with Fly Ash for patch repair material
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 詹穎雯
黃然
許鎧麟
陳君弢
廖敏志



高玉荃
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 172
中文關鍵詞: 斷面修復法水泥砂漿補修材料飛灰聚合物材料SBR
外文關鍵詞: Patch repair material, Cement mortar of repair materials, Fly ash, Polymer materials, SBR
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在台灣,鋼筋混凝土(RC)建築物為普遍使用之建築形式之一,自古至今,多數的建築物已呈現老化或損毀,為了安全之考量,進行補修或補強時選擇適當的補修工法及材料絕對是相當重要的。斷面修復法為最常見之修復方法之一,係將受腐蝕之鋼筋和侵蝕的混凝土部分去除,之後填補上補修材料修復。市售之水泥砂漿補修材料大多會添加聚合物材料來進行改性,以增加水泥砂漿補修材料之撓曲和黏結強度、改善滲透性、抗化學侵蝕能力以及抗凍融性,但與此同時也大幅度提高了材料價格。為了在不失去聚合物改性水泥砂漿補修材料之特性的前提下有效地降低補修材料成本,本研究擬以添加飛灰用來取代部分水泥來,並加入少量丁苯橡膠(SBR)聚合物材料來探討飛灰對於SBR水泥砂漿補修材料之效用。
    飛灰係火力發電後產生之廢料,此物質雖可能導致呼吸系統疾病及環境汙染,但有益於土木建設,可以在不犧牲建築物之強度和建設下取得良好的耐久性和經濟性。本研究將藉由添加了飛灰及少量SBR聚合物材料作為補修材料之力學性能,提出建議配比。並以此配比進行耐久性能和耐候性能相關試驗,以及將補修範圍對補修後之構件行為影響進行模擬,綜合其結果並加以探討。
    根據試驗結果,由於乳膠SBR比粉末SBR更容易降低砂漿之抗壓強度和撓曲強度,因此認為粉末SBR更有利用作斷面修復材。且隨著聚合物固形量與總水量之比值(S/W比)增加,將降低抗壓強度、抗拉強度和撓曲強度。除此之外,如S/W比過小,則SBR無法改善SBR改性飛灰水泥砂漿之力學性能。因此建議當W/B比為50%之含飛灰SBR水泥砂漿補修材料(飛灰取代率50%),S/W比為5 ~ 10%,其力學性能較適用於補修材料。
    關於耐久性能方面,在S/W比固定之情況下,飛灰取代水泥的比例越高,氯離子的滲透深度越淺。在相同之飛灰取代率下,SBR對氯離子滲透深度之影響不大。關於耐候性能方面,紫外線會對補修材料造成老化,導致表面吸水率增加及抵抗氯離子滲透之能力減弱。試片經紫外線照射不同時間下,飛灰取代率為25%,且W/B為50%和S/W比為7%之案例對抵抗氯離子滲透之能力最佳且穩定。據模擬結果可得出的結論是,於最大拉應力區補修後之構件其承載能力皆有上升,補修的範圍越大,構件之承載能力也越大。依照本研究使用之案例,採用S/W比為7%之含飛灰SBR水泥砂漿補修材料進行懸臂梁之高應力區補修時,只要補修範圍至少需要600 mm×60 mm以上,則補修材料才不至於發生提前剝落的現象。


    Reinforced concrete (RC) is the most popular construction material for structures. From the 1970s to the present, over years of wind, rain, and even frequent earthquakes, many RC buildings or structures have deteriorated even to the point of becoming dangerous. Therefore, maintaining deteriorated/damaged RC buildings or structures is a very important issue. In the past several years, the polymer-modified cement mortar has been proposed as a replacement to cement mortar as a repair material. The incorporation of synthetic polymers into Portland cement mortar and concrete began in the 1950s. However, commercial polymer-modified cement mortar products for repair are much more expensive than ordinary cement mortars. Therefore, to reduce the cost of the repair material, the goal of this work is to replace some of the cement in polymer-modified cement mortars with fly ash.
    Fly ash is used as a supplementary cementations material (SCM) in the production of Portland cement concrete. The advantages of fly ash are pore refinement, environmental protection, and cost. However, a shortage of fly ash is currently resulting in low early-age strength. The polymer-modified cement has been widely used as a repair mortar owing to its high strength, good durability, and favorable bonding with old concrete structures. Therefore, if cement mortar could be made to combine the advantages of both fly ash and Styrene-butadiene rubber (SBR) polymer material, then the repair material would not only be cheaper but also exhibit better performance. Therefore, this investigation studies the effect of fly ash on the mechanical properties of polymer-modified cement mortars, and then recommended the mixing proportions of repair materials. After that, the durability test and weather resistance test were carried out on the repair materials. Moreover, the effect of repair range on the behavior of repairing components is discussed by Finite Element Analysis.
    According to the experimental results, since latex SBR decreases the compressive strength and flexural strength more than powder SBR, powder SBR is favored for use as the patch repair material. The compressive strength, tensile strength and flexural strength decrease as the SBR solid/water ratio (S/W ratio) of powder SBR increases. However, SBR cannot improve the mechanical properties of SBR-modified cement mortars with fly ash when the S/W ratio of SBR is less. Therefore, the W/B ratio of 0.5, it is recommended that SBR-modified cement mortar containing fly ash (fly ash replacement rate of 50%), S/W ratio of 5 ~ 10%, its mechanical properties are suitable for repair materials.
    Regarding the durability, in the case of S/W ratio fixation, the higher replacement ratio of fly ash that the better the resistance to chloride ions. The condition of the fly ash replacement ratio is fixed; SBR has little effect on chloride ion penetration depth. Regarding weather resistance, ultraviolet rays cause aging of repair materials, resulting in the surface water absorption increase and the resistance to chloride ion penetration decrease. In three different UV exposure times, the S/W ratio of 7% is the most excellent and stable in its ability to resist chloride ion penetration. According to the Finite Element Analysis can be concluded that the repaired components can increase bearing capacity. The larger the repairing range, the stronger the bearing capacity of the component. Limited to the case of this study, use the S/W ratio of 7% of fly ash SBR cement mortar repair material on the high tensile stress of the cantilever beam, at least the repair range to more than 600 mm×60 mm, the repair materials will not early peeling off.

    目錄 摘要 Abstract 致謝 目錄 表索引 圖索引 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 研究架構 第二章 鋼筋混凝土之劣化及補修相關介紹 2.1 鋼筋混凝土建築物之劣化行為 2.1.1 混凝土裂縫 2.1.2 混凝土剝落 2.1.3 建築物滲漏水 2.2 鋼筋混凝土建築物之耐久性能檢測 2.2.1 現場檢測 2.2.2 實驗室檢測 2.3 鋼筋混凝土劣化之原因 2.3.1 混凝土之劣化 2.3.2 鋼筋之劣化 2.4 鋼筋混凝土之補修策略 2.4.1 混凝土之補修工法 2.4.2 鋼筋之補修工法 2.4.3 台灣之補修工法 2.5 斷面修復補修材料 2.5.1補修材料之相容性需求 2.5.2補修材料之總類 2.5.3聚合物水泥砂漿補修材料 2.6 飛灰之應用 第三章 SBR水泥砂漿補修材料力學性質 3.1 材料與試驗 3.1.1材料 3.1.2力學性能試驗 3.2 控制變因 3.3 力學性能之探討 3.3.1 飛灰取代率 3.3.2 強度品質基準 3.3.3 W/B比 3.3.4 SBR之型態 3.3.5 後期強度 3.3.6 強度回歸公式 3.4 固定飛灰取代率之案例 3.4.1 力學性能 3.4.2 SEM 3.4.3 強度回歸公式修正 3.5 高含量SBR之案例 第四章 SBR水泥砂漿補修材料耐久性能 4.1 耐久性能之重要性 4.2 耐久性能試驗 4.3 飛灰對耐久性之影響 4.3.1乾縮試驗 4.3.2吸水率試驗 4.4 S/W比對飛灰水泥補修砂漿耐久性之影響 4.4.1乾縮率 4.4.2氯離子含量 4.5 飛灰取代率對高含量SBR水泥砂漿耐久性之影響 4.5.1乾縮率 4.5.2氯離子含量 4.6 界面處之耐久性試驗 4.6.1試體 4.6.2鹽水浸漬試驗 4.6.3快速氯離子滲透試驗 第五章 SBR水泥砂漿補修材料耐候性能 5.1 耐候性能試驗 5.2 氯離子含量檢測 第六章 經SBR水泥砂漿補修材料修復後之構件力學行為分析模擬 6.1 ANSYS 有限元分析軟體之介紹 6.2 ANSYS 有限元分析軟體之分析流程 6.3 ANSYS 有限元分析軟體之模擬 第七章 綜合討論與建議 7.1 結論 7.1.1 力學性能 7.1.2 耐久性能 7.1.3 耐候性能 7.1.4 分析模擬 7.2 未來展望 參考文獻

    Abbasnia, R., Godossi, P., and Ahmadi, J. (2005). “Prediction of restrained shrinkage based on restraint factors in patching repair mortar.” Cement and concrete research, 35(10), 1909-1913.
    Aldea, C. M., Young, F., Wang, K., & Shah, S. P. (2000). “Effects of curing conditions on properties of concrete using slag replacement.” Cement and Concrete Research, 30(3), 465-472.
    American Society for Testing and Materials. Method of test for tensile strength of hydraulic cement mortars (ASTM C 190). ASTM International.
    American Society for Testing and Materials. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM C 618). ASTM International.
    American Society for Testing and Materials. Standard test method for flow of hydraulic cement mortar (ASTM C 1437). ASTM International.
    American Society for Testing and Materials. Standard test method for compressive strength of hydraulic cement mortars (ASTM C 109). ASTM International.
    American Society for Testing and Materials. Standard test method for flexural strength of hydraulic - cement mortars (ASTM C 348). ASTM International.
    American Society for Testing and Materials. Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement (ASTM C 596). ASTM International.
    American Society for Testing and Materials. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete (ASTM C 642). ASTM International.
    American Society for Testing and Materials. Standard Test Method for Water-Soluble Chloride in Mortar and Concrete (ASTM C 1218). ASTM International.
    American Society for Testing and Materials. Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete (ASTM C 1152). ASTM International.
    Andrade, C. (1993). “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements.” Cement and concrete research, 23(3), 724-742.
    Batis, G., Pantazopoulou, P., Tsivilis S. & Badogiannis E. (2005) “The effect of metakaolin on the corrosion behaviour of cement mortars.” Cement and Concrete Composites, 27, 125130
    Beeldens, A. N. N. E., Monteny, J., Vincke, E., De Belie, N., Van Gemert, D., Taerwe, L., and Verstraete, W. (2001). “Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars.” Cement and Concrete Composites, 23(1), 47-56.
    Bentza, D.P., Geikerb, M.R. and Hansenb, K.K. (2001). “Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars.” Cement and Concrete Research, 31, 1075–1085.
    Bijen, J. (1996). “Benefits of slag and fly ash.” Construction and building materials, 10(5), 309-314.
    Chandra, S., and Flodin, P. (1987). “Interactions of polymers and organic admixtures on portland cement hydration.” Cement and Concrete Research, 17(6), 875-890.
    Chinese Hydraulic Engineering Society of Civil Engineers. (2005). “Technical Manual for Maintenance and Reinforcement of Concrete Structures.” Chinese Hydraulic Engineering Society (CHES), Taiwan: Science and Technology Book Company Limited.
    Civil Engineering Concrete Committee Fly Ash. (2009) “Concrete library Latest utilization technology of fly ash concrete adapted to recycling society - Proposal for design and construction guideline for expanding usage.” Japan Society of Civil Engineers (JSCE), Japan.
    Clear, K. C., and Chollar, B. H. (1978). “Styrene-Butadiene Latex Modifiers for Bridge Deck Overlay Concrete.” FHWA-RD-78-35, Apr. (National Technical Information Service, PB 283945).
    Cooke, G. B. (1941). U.S. Patent 2,227533.
    Cristofaro, M.T., D’Ambrisi, A., De Stefano, M., and Tanganelli, M. (2011). “Concrete compressive strength extracted from existing buildings.” The New Boundaries of Structural Concrete Session D – Concrete Quality Control on Site, 333-340.
    Cusson, D., and Mailvaganam, N. (1996). “Durability of repair materials.” Concrete International-Design and Construction, 18(3), 34-38.
    Dempsey, B.J., Thompson, M.R. (1967): Durability properties of lime-soil mixtures.
    Dhir, RK, Jones, MR. (1999). “Development of chloride-resisting concrete using fly ash.” Fuel, 78(2),137–142.
    Diab, A. M., Elyamany, H. E., and Ali, A. H. (2013). “Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties,” Alexandria Engineering Journal, 52(1), 83-98.
    Dow Chemical Co. (1985). A Handbook on Portland Cement Concrete and Mortar Containing Styrene/Butadiene Latex, Midland, Mich.
    Geist, J. M.; Amagna, S. V.; and Mellor, B. B., (1953). “Improved Portland Cement Mortars with Polyvinyl Acetate Emulsions.” Industrial and Engineering Chemistry, 45(4), 759-767.
    Gomes, C. E. M., Ferreira, O. P., and Fernandes, M. R. (2005). “Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement pastes.” Materials Research, 8(1), 51-56.
    Griffiths, L. H., (1951). “Floor Surfacings for Food Processing Plants.” Food Manufacture, 26(9), 369-372.
    GW D. P. (1996), “Polymer modified concrete properties and application.” In: International ICPIC workshop on polymers in concrete for Central Europe, Bled, Slovenia, 63-67.
    Hamasaki, H., Motegi, T., Noguchi, T., Wang, D., and Kim, H. (2010). “Fire resistance of repaired components by polymer-modified cement mortar.” Journal of Structural and Construction Engineering (Transactions of AIJ), 75(652), 1065-1071.
    Hela, R., and Orsáková, D. (2013). “The mechanical activation of fly ash.” Procedia Engineering, 65, 87-93.
    Hewlett, P.C. (1998), “Lea’s chemistry of cement and concrete.” John Wily and Sons Inc., New York.
    Hwang, E. H., Ko, Y. S., and Jeon, J. K. (2008). “Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate.” Journal of Industrial and Engineering Chemistry, 14(2), 265-271.
    Jaenicke, J., Knoop, H., Miedel, H., and Schweitzer, O.,(1943). U.S. Patent 2,311,233, Feb. 16.
    Japan Society of Civil Engineers, (2015). コンクリート用フライアッシュ (JIS A 6201). Japanese Industrial Standards, Japan.
    Japan Society of Civil Engineers. (1997). “Current status and future trends of research on corrosion / corrosion protection and repair of reinforcing bars: Report of the Subcommittee on Corrosion Control of Concrete Committee,” Japan Society of Civil Engineers (JSCE), Japan.
    Japan Society of Civil Engineers. (2005). “Outline of recommendation for concrete repair and surface protection of Concrete Structures by JSCE.” Japan: Maruzen Publishing Co., Ltd.
    Japan Society of Civil Engineers. “Test method for effective diffusion coefficient of chloride ion in concrete by migration (JSCE G 571).” Standard specifications for concrete structures.
    Japanese Industrial Standards, (2015). セメントの物理試験方法 (JIS R 5201). Japanese Industrial Standards, Japan.
    Japanese Industrial Standards, (2015). セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂 (JIS A 6203). Japanese Industrial Standards, Japan.
    Japanese Industrial Standards, (2016). ポリマーセメントモルタルの試験方法 (JIS A 1171). Japanese Industrial Standards, Japan.
    Juan, Yu-Jou, Chiu, Chien-Kuo, Ueda, Takao and Kao, Yu-Chuan. (2016). “Experimental Investigation on Mechanical Properties of Polymer-Modified Mortar with Fly ash for Patch Repair.” Poster session presented at International Forum on Advanced Technologies, Tokushima, Japan.
    Kampala, A., Horpibulsuk, S., Prongmanee, N., & Chinkulkijniwat, A. (2013). “Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay.” Journal of Materials in Civil Engineering, 26(4), 633-643.
    Kao, Y. C., Ueda, T., & Chiu, C. K. (2017). “Evaluation of Steel Corrosion in Fly Ash Concrete Containing Chlorides Using Electrochemical Indexes.” 材料, 66(8), 566-573.
    Kao, Y. C., Ueda, T., & Chiu, C. K. (2018). “Evaluation of Repair Effect of Patch Repair Materials Containing Fly Ash and Lithium Nitrite.” 材料, 67(8), 795-802.
    Kao, Yu-Chuan, Chiu, Chien-Kuo, and Ueda, Takao. (2015). “Experimental Investigation on Mechanical Properties of Mortar with Fly ash for Patch Repair.” Symposium on Reliability of Engineering Systems, 185-192.
    Kao, Yu-Chuan, Chiu, Chien-Kuo, and Ueda, Takao. (2016). “Experimental Investigation on Mechanical Properties of Polymer Cement Mortar with Fly Ash for Patch Repair.” Poster session presented at International Forum on Advanced Technologies, Tokushima, Japan.
    Knab, L. I., and Spring, C. B., (1989). “Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete.” Cement, Concrete, and Aggregates, CCAGDP, 11(1).
    Kuhlmann, L. A., (1984). “The Effect of Cure Time on Chloride Permeability of Latex-Modified Concrete.” Dow Chemical Co., Midland, Mich.
    Kuhlmann, L. A., (1990). “Test Method for Measuring the Bond Strength of Latex-Modified Concrete and Mortar.” ACI Materials Journal, 87(4), 387-394.
    Lee, H. S. and Shin, S. W. (2007). “Evaluation of the effect of lithium nitrite corrosion inhibitor by the corrosion sensors embedded in mortar.” Construction and Building Materials, 21(1), 1-6.
    Lezy, R., and Paillere, A., (1967). “Concrete, Mortars and Grouts—Improvements by Addition of a Resin.” Synthetic Resins in Building Construction, 1, RILEM Symposium, Paris, Sept. 4-6. (in French)
    Li Cheng-Hao . (2000) “Effect of polymer on the properties of repair mortars,” Dept. Harbor & River Engineering, National Taiwan Ocean University.
    Li S, Roy DM, (1986). “Investigation of relations between porosity, pore structure and chloride diffusion of fly ash blended cement pastes.” Cem Concr Res 16(5), 749–759.
    Makishima, O., Kato, Y., and Uomoto, T. (2010). “Application of a patching repair method for ensuring durability of concrete structures and performance evaluation of patching materials,” Doboku Gakkai Ronbunshuu F, JSCE Journal of Construction Engineering and Management, 66(1), 101-111.
    Mirza, J., Mirza, M. S., and Lapointe, R. (2002). “Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates.” Construction and Building Materials, 16(6), 365-374.
    Morgan, D. R. (1996). “Compatibility of concrete repair materials and systems,” Construction and building materials, 10(1), 57-67.
    Ohama Y. (1995), “Handbook of polmer modified concrete and moryar.” Properties and Process Technology, Noyes Publications.
    Ohama, Y. (1996). “Polymer-based materials for repair and improved durability: Japanese experience,” Construction and Building Materials, 10(1), 77-82.
    Ohama, Y. (1998). “Polymer-based admixtures.” Cement and concrete composites, 20(2-3), 189-212.
    Ohama, Y., (1973). “Study on Properties and Mix Proportioning of Polymer-Modified Mortars for Buildings.” Report of the Building Research Institute, 65, Tokyo, Japan, Building Research Institute. (in Japanese)
    Ohama, Y., and Kan, S., (1982). “Effects of Specimen Size on Strength and Drying Shrinkage of Polymer-Modified Concrete.” International Journal of Cement Composites and Lightweight Concrete, 4(4).
    Ohama, Y., and Shiroishida, K., (1984). “Freeze-Thaw Durability of Polymer-Modified Mortars.” Proceedings of the International Symposium on Future for Plastics in Building and in Civil Engineering, Belgian Research Centre for Plastic and Rubber Materials, Liege, 1B.22.1- 1B.22.5
    Ohama, Y., Demura, K., Nagao, H., and Ogi, T. (1986). “Adhesion of Polymer-Modified Mortar to Ordinary Cement Mortar by Different Test Methods.” RILEM Technical Committee 52 Symposium, Paris, France, Sept. 16-19.
    Ohama, Y.; Moriwaki, T.; and Shiroishida, K., (1984). “Weatherability of Polymer-Modified Mortars through Ten-Year Outdoor Exposure.” 4th International Congress of Polymers in Concrete, Darmstadt, West Germany, Sept.
    Ohama, Y.; Notoya, K.; and Miyake, M., (1985). “Chloride Permeability of Polymer-Modified Concretes.” Transactions, Japan Concrete Institute.
    Otsuki, N., Nagataki, S. and Nakashita, K. (1993). “Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials.” Construction and building materials, 7(4), 195-201.
    Paul, K. T., Pabi, S. K., Chakraborty, K. K., and Nando, G. B. (2009). “Nanostructured fly ash–styrene butadiene rubber hybrid nanocomposites.” Polymer composites, 30(11), 1647-1656.
    Rodger, S. A., Brooks, S. A., Sinclair, W., Groves, G. W., and Double, D. D. (1985). “High strength cement pastes.” Journal of materials science, 20(8), 2853-2860.
    Shimizu, Y., Hirosawa, M., and Zhou, J. (2000). “Statistical analysis of concrete strength in existing reinforced concrete buildings in Japan.” Proceedings of the 12th world conference on earthquake engineering, Auckland, New Zealand.
    Stampino, P. G., Zampori, L., Dotelli, G., Meloni, P., Sora, I. N., and Pelosato, R. (2009). “Use of admixtures in organic-contaminated cement–clay pastes.” Journal of hazardous materials, 161(2-3), 862-870.
    Stevens, W. H., (1948). “Latex Processes and Potentialities.”Rubber Developments, 1(3), 10-13.
    Tahir, M. A., and Sabir, M. (2005). “A study on durability of fly ash-cement mortars.” In 30th conference on Our world in concrete and structure, 23 - 24 August 2005.
    Takahashi, Y., Hamasaki, H., Kanda, T., Yasuda, M., Kojima, M., and Nonaka, A. (2013). “Examination and evaluation of durability of polymer-modified mortar.” AIJ Journal of Technology and Design, 19(43), 813-818.
    Thomas, M. D. A. (2007). “Optimizing the use of fly ash in concrete.” Portland Cement Association, Skokie, IL.
    Wagner, H. B. (1965). “Polymer-modified hydraulic cements.” Industrial & Engineering Chemistry Product Research and Development, 4(3), 191-196.
    Walters, D. G., (1992). “VAE Redispersible Powder Hydraulic Cement Admixtures.” Concrete International, 14(4), 30-34.
    Wang, R., and Zhang, L. (2015). “Mechanism and durability of repair systems in polymer-modified cement mortars.” Advances in Materials Science and Engineering, 2015.
    Wang, Ru, Wang, Peiming (2008). “Application of polyacrylic ester latex to cement mortar,” Journal of The Chinese Ceramic Society, 36(7), 946-949.
    Wang, Z., Han, Y., & Hua, Y. (2003). “Research on increasing effect of solution polymerization for cement-based composite.” Cement and concrete research, 33(10), 1655-1658.
    Wee, T. H., and Suryavanshi, A. K. (1999). “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability test.” Cement and Concrete Composites, 21(1), 59-72.
    Wee, T. H., Suryavanshi, A. K., and Tin, S. S. (2000). “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures.” Materials Journal, 97(2), 221-232.
    Werk and Wirken, (1997), Magazine of Wacker-Chemie GmbH, Munich, Germany, Feb.
    Yang, C. C., Cho, S. W., and Huang, R. (2002). “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test.” Cement and Concrete Research, 32(2), 217-222.
    Yucui H. (2000). “Research on powder organic compound modified cement-based composites master's thesis.” Beijing University of Technology, Beijing, In Chinese.
    Zhong, S., Chen, Z. (2002). “Properties of latex blends and its modified cement mortars.” Cement and Concerete Research, 32, 1515-1524. Enevoldsen, J. N., Hansson,C. M. and Hope, B.B. (1994). “Binding of chloride in mortar containing admixed or penetrated chlorides‖ Cement and Concrete Research.” Vol.24, 1994, pp. 1525-1533.
    中國土木水利工程學會(1994) 。既有混凝土結構務維修及補強技術手冊。台灣。
    中國建築科學研究院(1995)。混凝土實用手冊。混凝土研究院,pp.809-831。
    內政部建築研究所(2006)。既有RC建築物劣化及其修復之研究。台灣。
    內政部建築研究所(2013)。鋼筋混凝土於中性化及氯離子複合作用下腐蝕劣化之研究。台北市。
    內政部建築研究所(2014)。「混凝土收縮開裂機制及防制技術之研究」。台灣。
    公共工程委員會(1999) 。公共工程飛灰混凝土使用手冊。台灣。
    日本コンクリート工学協会(2016)。コンクリート診断技術 ‘16。日本。
    日本建築學會(1997)。鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説。日本。
    交通部運輸研究所(2012)。港灣混凝土構造物修補材料與工法之研究(1/4)。台灣。
    行政院公共工程委員會(1999) 。公共工程飛灰混凝土使用手冊。台灣。
    李有豐(1998) 。混凝土結構物劣化機制與維修補強要領。結構物補研討會論文集,工業技術研究院,中華民國新竹市。
    李政壕(2010) 。聚合物應用於水泥修補砂漿性質之研究。國立臺灣海洋大學,河海工程學系。
    松本恒隆、宗伊佐雄、真崎史郎 (1971)。紫外線照射スチレンーブタジェンゴムの乳化分散能。高分子化學,28(313),pp. 444-450。
    陳振欣(2005)。高分子應用對於水泥質材料性質影響之研究。國立臺灣海洋大學,材料工程研究所。
    黃志新(2016)。ANSYS Workbench16.0 超級學習手冊。北京。人民郵電出版社。
    槙島 修、加藤 佳孝、魚本 健人(2010)。コンクリート 構造物の耐久性を考慮した断面修復工法の適用と断面修復材の性能評価に関するー考察。土木工学会論文集F,Vol.66,No.1,pp.101-111,日本。

    QR CODE