簡易檢索 / 詳目顯示

研究生: 蕭惟丰
Wei-Feng Shiau
論文名稱: 新型絕緣材料添加飛灰與爐石漿體之物理性質研究
The Study on the Physical Properties of Binder with New Insulation Material by Adding Fly Ash and Slag
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 王和源
Her-Yung Wang
陳君弢
Chun-Taoc Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 新型絕緣材料絕緣漿體水固比卜作嵐材料熱傳導率
外文關鍵詞: New Insulation Material, heat-insulating paste, water-solid ratios, Pozzolanic material, Thermal Conductivity
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以新型絕緣材料(NIM)當作主體,將新型絕緣材料與飛灰(FA)或爐石粉(GGBFS)均勻拌合,設計出絕緣漿體。絕緣漿體在變數上之設計,使用3種不同水固比(W/S=0.6、0.8、1),將新型絕緣材料之漿體搭配4種不同比例之卜作嵐材料,飛灰(FA content=0%、10%、30%、50%)、水淬高爐石粉(GGBFS=0%、10%、30%、50%),共設計出21組配比,灌注之試體在25℃室溫下養護。進行物理性質試驗(抗壓強度、超音波波速、熱傳導係數、假比重、吸水率、長度變化量、耐火性),最後根據各種配比進行結果分析與討論。研究顯示:添加燃煤飛灰,抗壓強度、超音波波速,熱傳導率、假比重降低,吸水率增加;添加水淬高爐石粉,熱傳導率、耐火試體背溫降低,抗壓強度、超音波波速、假比重增加。將熱傳導率與硬固性能之關係做比較,熱傳導與抗壓強度、超音波速、假比重有正比關係;熱傳導與水固比、吸水率有反比關係,配比100NF50有最低熱傳導率,配比60NS50有最高抗壓強度。水固比0.6,厚度20mm之試體,大致能達到1小時之防火時效。


    In this study, New Insulation Material (NIM) was used as the main cementitious material to prepare heat-insulating paste. Fly Ash (FA) and Ground-Granulated Blast-Furnace Slag (GGBFS) used to replace NIM by 10%, 30% and 50% bay volume while a mixture with 100% NIM was used as reference mixture. The heat-insulating paste was designed using three different water-solid ratios (0.6, 0.8, and 1). Twenty-one mix-proportions were prepared and cured under ambient temperature curing (25oc). Compressive strength, ultrasonic pulse velocity, thermal conductivity, apparent specific gravity, water absorption, drying shrinkage (length change) and fire resistance tests were conducted to the study the performance of insulation paste in different proportions of FA and GGBFS and different water-solid ratios. The results revealed that the higher inclusion of FA reduced the compressive strength, ultrasonic pulse velocity, thermal conductivity, and apparent specific gravity while water absorption was increased. On the other hand, the higher content of GGBFS will reduce thermal conductivity and back temperature of fire resistance as compressive strength; ultrasonic pulse velocity and apparent specific gravity were improved. Thermal conductivity has a direct proportional relationship with compressive strength, ultrasonic pulse velocity, and apparent specific gravity; while it has an inverse relationship with water-solid ratio and water absorption. Group 100NF50 has the lowest thermal conductivity and 60NS50 has the highest compressive strength. The test specimen with a water-solid ratio of 0.6 and a thickness of 20mm can achieve a fire aging of about 1 hour.

    摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 VIII 代號及符號說明 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 2 1.4 預期成果 2 第二章 文獻回顧 4 2.1 絕緣材料 4 2.1.1 絕緣材料簡介 4 2.1.2 絕緣材料種類 4 2.2 輕質粒料 5 2.2.1 輕質粒料簡介 5 2.2.2 輕質粒料種類 5 2.3 熱傳導基本原理 5 2.3.1 熱量傳導機理 5 2.3.2 熱傳導係數 6 2.4 卜作嵐材料 7 2.4.1 飛灰 7 2.4.2 水淬爐石粉 8 2.5 影響材料熱傳導係數的原因 9 2.5.1 水與溫度 9 2.5.2 骨材種類 9 2.5.3 膠結材料類型 10 2.5.4 單位重之影響 10 第三章 試驗計畫 19 3.1 計畫概要 19 3.2 試驗材料 19 3.2.1 新型絕緣材料 19 3.2.2 水淬高爐石粉 19 3.2.3 飛灰 19 3.2.4 拌合水 20 3.3 試驗流程 20 3.3.1 試驗變數 20 3.3.2 配比設計 20 3.3.3 拌合程序 21 3.3.4 試驗項目及方法 21 3.4 試驗方法與設備 22 3.4.1 材料基本性質試驗 22 3.4.2 材料硬固性質試驗 23 第四章 結果分析與討論 44 4.1 材料基本性質 44 4.2 材料硬固性質 45 4.2.1 抗壓強度 45 4.2.2 超音波波速 46 4.2.3 熱傳導率 47 4.2.4 假比重 49 4.2.5 吸水率 50 4.2.6 長度變化量 51 4.2.7 耐火性試驗 53 4.3 綜合討論 54 第五章 結論與建議 82 5.1 結論 82 5.2 建議 83 參考文獻 84

    [1] T.M.I. Mahlia, B.N. Taufiq, Ismail, H.H. Masjuki, Correlation between thermal conductivity and the thickness of selected insulation materials for building wall, Energy and Buildings 39(2) (2007) 182-187.
    [2] P. Shafigh, I. Asadi, N.B. Mahyuddin, Concrete as a thermal mass material for building applications - A review, Journal of Building Engineering 19 (2018) 14-25.
    [3] 徐惠忠、周明, 絕熱材料生產及應用, 中國建材工業出版社 (2001年).
    [4] 黃兆龍, 混凝土性質與行為, 詹氏書局 (2007年).
    [5] M. Williams, What is heat conduction?, Phys.Org (2014).
    [6] N.C. Material, Thermal Conductivity, NDT Resource Center.
    [7] 黃兆龍, 卜作嵐混凝土使用手冊, 財團法人中興工程顧問社 (2007).
    [8] ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete.
    [9] CNS中華民國國家標準, 混凝土用飛灰及天然或煆燒卜作嵐攙和物.
    [10] 林平全, 飛灰混凝土, 科技圖書股份有限公司 (民國78年).
    [11] S. Diamond, Intimate association of coal particles and inorganic spheres in flyash, Cement and Concrete Research 12(3) (1982) 405-407.
    [12] 行政院公共工程委員會, 公共工程高爐石混凝土使用手冊.
    [13] 中國鋼鐵公司, 爐石利用推廣手冊.
    [14] JIS A 6206:2013 コンクリート用高炉スラグ微粉末,2013.
    [15] M.Z. Bessenouci, N.E. Bibi-Triki, S. Bendimerad, Z. Nakoul, S. Khelladi, A. Hakem, Influence of Humidity on the Apparent Thermal Conductivity of Concrete Pozzolan, Physics Procedia 55 (2014) 150-156.
    [16] R.C. Valore, Calculations of U-values of hollow concrete masonry, Concr. Int. (1980) 40-63.
    [17] M.I. Khan, Factors affecting the thermal properties of concrete and applicability of its prediction models, Building and Environment 37(6) (2002) 607-614.
    [18] P. Liley, Steam Tables in SI Units, private communication, School of Mechanical Engineering, Purdue University, West Lafayette, IN (1984) C862.
    [19] W. Wang, C. Lu, Y. Li, Q. Li, An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure, Construction and Building Materials 148 (2017) 148-154.
    [20] W. Zhang, H. Min, X. Gu, Y. Xi, Y. Xing, Mesoscale model for thermal conductivity of concrete, Construction and Building Materials 98 (2015) 8-16.
    [21] I. Asadi, P. Shafigh, Z.F.B. Abu Hassan, N.B. Mahyuddin, Thermal conductivity of concrete – A review, Journal of Building Engineering 20 (2018) 81-93.
    [22] R. Demirboğa, Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures, Building and Environment 42(7) (2007) 2467-2471.
    [23] R. Demirboǧa, R. Gül, Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures, Energy and Buildings 35(11) (2003) 1155-1159.
    [24] 李柏賢, 泡沫混凝土物理性質之探討, 營建工程系, 國立臺灣科技大學, 台北市, 2015, p. 101.
    [25] N. Silva, U. Mueller, K. Malaga, P. Hallingberg, C. Cederqvist, Foam concrete-aerogel composite for thermal insulation in lightweight, 2015.
    [26] CNS中華民國國家標準, 混凝土及水泥砂漿用水淬高爐爐碴粉.
    [27] 郭淑德, 「飛灰的利用與發展」,如何使用飛灰以提升混凝土品質研討會論文集, 財團法人台灣營建研究院 (1998).
    [28] CNS中華民國國家標準, 建築構造構件耐火試驗法.
    [29] S. Horkoss, G. Escadeillas, T. Rizk, R. Lteif, The effect of the source of cement SO3 on the expansion of mortars, Case Studies in Construction Materials 4 (2016) 62-72.
    [30] S. Kim, J. Seo, J. Cha, S. Kim, Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel, Construction and Building Materials 40 (2013) 501-505.
    [31] 湛淵源, 水泥漿質與量對混凝土工程行為之影響., 國立臺灣科技大學博士論文 (1999).
    [32] 張大鵬、陳柏存、廖御吟、高建驆, 水泥值材料凝結期間及硬固後熱傳機理及分析之研究, 行政院國家科學委員會專題研究計畫 (2005年).
    [33] 余泓育、方禎璋、吳傳威、鄭大偉, 輕質無機聚合物之耐火性能研究, 第十屆中華民國結構工程研討會 (2010).

    無法下載圖示 全文公開日期 2025/01/10 (校內網路)
    全文公開日期 2025/01/10 (校外網路)
    全文公開日期 2025/01/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE