簡易檢索 / 詳目顯示

研究生: 陳柏諺
Po-Yen Chhen
論文名稱: 利用化學插層剝離法製備氮化硼奈米片應用於導熱矽膠墊之開發
Preparation of Boron Nitride Nanosheets by Chemical Intercalation Exfoliation Method Applied on the Development of Thermal Conductive Silicone Pad
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
廖文城
Wen-Chang Liaw
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 195
中文關鍵詞: 氮化硼奈米片化學插層剝離法自由基聚合導熱矽膠墊田口方法本質轉換選擇消去法
外文關鍵詞: Boron nitride nanosheets, chemical intercalation exfoliation, radical polymerization, thermal conductive silicone pad, Taguchi method, Elimination et choice translating reality
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學插層剝離法與自由基聚合法剝離六方氮化硼(hexagonal boron nitride, h-BN)之片層,製備氮化硼奈米片(BNNSs),解決目前製備氮化硼奈米片之尺寸無法控制、製程複雜等問題,達到尺寸的控制與製程簡單。將h-BN、BNNSs及球型氧化鋁(Al2O3)應用於矽橡膠之填充,製備導熱矽膠墊(Thermal Conductive Pad),分別探討單一與複合粒子導熱性能與力學性能的差異性;本研究分為BNNSs製備、導熱矽膠墊製備之最佳化參數設計及導熱矽膠墊實驗探討三個部分進行討論,利用複合粒子與填充奈米填料的方法,解決單一填料之導熱性能受限的問題,達到降低填料狀態下,導熱矽膠墊能具有高導熱與高力學性能之目的。
    第一部分為氮化硼奈米片的製備,原料組成為六方氮化硼(h-BN),插層劑N,N二甲基丙烯酰胺(N,N-Dimethylacrylamide, DMAA)提供銨鹽離子進行插層、引發劑偶氮二異丁腈(Azobisisobutyronitrile, AIBN)在熱環境中與插層劑引發自由基聚合反應,促使分子增長而達到片層剝離的效果。利用X光繞射分析儀(X-ray Diffractometer, XRD)與場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscopy, FE-TEM)分析BNNSs層間距離與晶相結構,場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM)分析BNNSs片層厚度,研究結果顯示,添加AIBN 0.1phr、反應時間24小時,層間距離可達0.35nm,片層厚度達到5nm,且BNNSs經化學插層剝離後其晶型結構未被破壞。
    第二部分為導熱矽膠墊的製備。將第一部分之BNNSs填充至矽橡膠中,佐證BNNSs之高導熱性,經實驗結果證實,單一填充BNNSs較填充h-BN更能有效提升矽橡膠的熱傳導性能及力學性能,因此本研究加入Al2O3,利用複合粒子的方法,製備複合粒子之導熱矽膠墊,解決提升單一填料之導熱性能受限的問題。使用熱傳導分析儀與萬能拉力試驗機進行測試,研究結果顯示,填充Al2O3 60wt%與BNNSs 20wt%,導熱係數及拉伸強度分別達到5.23W/mK與102 Psi,證實本研究製備之導熱矽膠墊在降低粉體填充量的狀態下,能兼具高導熱及高力學性能。
    第三部分為導熱矽膠墊製程最佳化參數設計與實驗分析驗證,利用田口方法(Taguchi method)與本質轉換選擇消去法(Elimination et choice translating reality, ELECTRE)進行實驗規劃,將繁雜的實驗次數及成本降到最少,探討每一組控制因子對導熱墊品質特性的影響,尋找產品最佳化製程參數組合,進行導熱矽膠墊之物性測試,測得導熱矽膠墊之導熱係數與拉伸性能分別達5.14W/mK及102 Psi。證實填充BNNSs可有效提升導熱與力學性能,達到市售導熱矽膠墊使用上之需求規範。


    In this study, the layers of hexagonal boron nitride (h-BN) were stripped by chemical intercalation and free radical polymerization to prepare boron nitride nanosheets (BNNSs) to solve the current preparation of boron nitride nanosheets. The size of the nano tablets cannot be controlled, the process is complicated, and the like, and the achieve size control and the process are simple. The h-BN, BNNSs and spherical alumina (Al2O3) were applied to the filling of the silicone rubber to prepare the Thermal Conductive Pad. The difference between the thermal conductivity and the mechanical properties of the single and composite particles was discussed. The optimal parameters design of BNNSs preparation, thermal conductivity silicone pad preparation and thermal conductivity silicone pad experiment are discussed in three parts. The method of composite particles and filled nanofiller is used to solve the problem of limited thermal conductivity of single filler. In the state, the thermal conductive rubber pad can have the purpose of high thermal conductivity and high mechanical properties.
    The first part is the preparation of boron nitride nanosheets. The raw material composition is h-BN, and the intercalation agent dimethyl acrylamide (DMAA) provides ammonium salt ions for intercalation. The Azobisisobutyronitrile (AIBN) initiates a radical polymerization reaction with the intercalation agent in a thermal environment to promote molecular growth and achieve the effect of exfoliation. XRD and FE-TEM were used to analyze the interlayer distance and crystal structure of BNNSs. FE-SEM analysis of BNNSs sheet thickness, the results show that adding AIBN 0.1 phr, reaction time of 24 hours, interlayer distance of up to 0.35 nm, sheet thickness of 5 nm, and BNNSs chemical intercalation After the peeling, its crystal structure was not destroyed.
    The second part is the preparation of a thermal conductive rubber pad. The first part of BNNSs was filled into ruthenium rubber to prove the high thermal conductivity of BNNSs. The experimental results confirmed that single-filled BNNSs can improve the thermal conductivity and mechanical properties of silicone rubber more than h-BN. Therefore, Al2O3 was added in this study. The method of composite particles is used to prepare a thermal conductive silicone pad of composite particles, which solves the problem of improving the thermal conductivity of a single filler. The results show that 60% by weight of Al2O3 and 20% by weight of BNNSs, thermal conductivity and tensile strength of 5.23 W/mK and 102 Psi, respectively, confirm that the thermal conductive mat prepared in this study is It can combine high thermal conductivity and high mechanical properties under the condition of reducing the powder filling amount.
    The third part is the optimization parameter design and experimental analysis of the thermal conductive silicone pad process. The Taguchi method and the Elimination et selection translating reality (ELECTRE) are used for experimental planning, and the number of complicated experiments and the cost is reduced to the minimum. The influence of each control factor on the quality characteristics of the thermal pad is discussed. The combination of the optimized process parameters is found, and the physical properties of the thermal pad are measured. The thermal conductivity and tensile properties of the thermal pad are measured. 5.14 W/mK and 102 Psi. It is confirmed that the filling of BNNSs can effectively improve the thermal conductivity and mechanical properties, and meet the demand specification for the use of commercially available thermal conductive silicone pads.

    摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 文獻回顧 1.2.1 熱界面材料介紹 1.2.2 導熱矽膠墊的研究現況 1.2.3 氮化硼奈米片(BNNSs)的介紹與特性 1.2.4 氮化硼奈米片(BNNSs)的製備方法 1.2.5 氮化硼奈米片(BNNSs)應用的研究現況 1.3 研究目的 1.4 創新性 1.5 研究內容 1.5 論文架構及研究流程 第二章 材料特性與合成原理 2.1 氮化硼結構特性與性質 2.1.1 氮化硼結構 2.1.2 六方氮化硼性質 2.2 插層劑選擇 2.3 離子插層法 2.4 自由基聚合反應 2.5 高分子基材 2.5.1 導熱墊基材-矽橡膠 2.5.2 矽橡膠的固化機制 2.6 基礎熱傳理論 2.6.1 熱傳導公式 第三章 最佳化參數理論 3.1 田口方法(Taguchi Method) 3.1.1 設計實驗參數 3.1.2 直交表 3.1.3 訊號雜訊比 3.2 主效果分析 3.3 變異數分析法 3.4 確認實驗 3.5 本質轉換選擇消去法 3.5.1 ELECTRE計算步驟 3.6 最佳化參數設計流程 第四章 實驗規劃與流程 4.1 實驗規劃 4.2 實驗藥品與材料 4.3 實驗設備 4.4 實驗步驟 4.4.1 實驗步驟流程圖 4.4.2 實驗步驟 第五章 結果與討論 5.1 氮化硼奈米片(BNNSS)的製備及其性質分析 5.1.1 XRD分析 5.1.2 FTIR分析 5.1.3 Raman分析 5.1.4 SEM分析 5.1.5 TEM分析 5.2 矽橡膠硫化參數分析 5.2.1 DSC分析 5.2.2 MSR分析 5.3 導熱矽膠墊單品質最佳化實驗分析結果 5.3.1 導熱矽膠墊之導熱係數單品質最佳化分析 5.3.2 導熱矽膠墊之拉伸強度單品質最佳化分析 5.3.3 導熱矽膠墊之硬度單品質最佳化分析 5.4 導熱矽膠墊多品質最佳化實驗分析結果 5.4.1 多品質分析結果 5.5 導熱矽膠墊實驗探討 5.5.1 不同矽橡膠硬度對導熱性能與力學性能之影響 5.5.2 不同系列BNNSs對矽橡膠導熱與力學性能之影響 5.5.3 複合粒子對矽橡膠導熱與力學性能之影響 5.5.4 導熱矽膠墊目標值檢測 5.6 效益分析 第六章 結論 第七章 參考文獻

    [1] J. Gu, X. Meng, Y. Tang, Y. Li, Q. Zhuang, J. Kong, “Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectricthermally conductive composites with ideal thermal stabilities”, Composites: Part A, Vol. 92, pp. 27-32, 2016.
    [2] T. Han, Y. Luo, C. Wang, “Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets”, Journal of Physics D: Applied Physics, Vol. 47, 025303, 2014.
    [3] J. Yuan, K. M. Liew, “Structure stability and high-temperature distortion resistance of trilayer complexes formed from graphenes and boron nitride nanosheets”, Physical Chemistry Chemical Physics, Vol. 16, pp. 88-94, 2014.
    [4] C. Sevik, A. Kinaci, J. B. Haskins, T. Cagin, “Characterization of thermal transport in low-dimensional boron nitride nanostructures”, Physical Review B: Condensed Matter, Vol. 84, 085409, 2011.
    [5] L. Lindsay, D. A. Briodo, “Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride”, Physical Review B: Condensed Matter, Vol. 84, 155421, 2011.
    [6] L. Lindsay, D. A. Broido, “Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes”, Physical Review B: Condensed Matter, Vol. 85, 035436, 2012.
    [7] Y. Tominaga, K. Sato, D. Shimamoto, Y. Imai, Y. Hotta, “Wet-jet milling-assisted exfoliation of h-BN particles with lamination structure”, Ceramics Internationa, Vol. 141, pp. 512-519, 2015.
    [8] X. Tian, Y. Li, Z. Chen, Q. Li, L. Hou, J. Wu, Y. Tang, Y. Li, “Shear-assisted production of few layer boron nitride nanosheets by supercritical CO2 exfoliation and its use for thermally conductive epoxy composites”, Scientific Reports, Vol. 7, 17794, 2017.
    [9] S. Chatterjee, Z. Luo, M. Acerce, D. M. Yates, A. T. C. Johnson, L. G. Sneddon, “Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions”, Chemistry of Materials, Vol. 23, pp. 4414-4416, 2011.
    [10] A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, “Boron nitride nanosheet coatings with controllable water repellency”, ACS Nano, Vol. 5, pp. 6507-6515, 2011.
    [11] Y. Lin, T. W. Williams, T. B. Xu, “Aqueous dispersions of few layed and monolayedered hexagonal boron nitride nanosheets from sonication-assisted hydrolisis: critical role of water”, Journal of Physics Chemical, Vol. 115, pp. 2679-2685, 2011.
    [12] H. Ye, T. Lu, C. Xu, B. Han, N. Meng, L. Xu, “Liquid-phase exfoliation of hexagonal boron nitride into boron nitride nanosheets in common organic solvents with hyperbranched polyethylene as stabilizer macromol”, Chemical Physics, Vol. 219, 1700482, 2018.
    [13] W. Wang, S. J. Chen, F. B. Souza, B. Wub, W. H. Duan, “Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary portland cement paste”, Nanoscale, Vol. 10, pp. 1004-1014, 2018.
    [14] W. Lei, V. N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, “Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization”, Nature Communications, Vol. 6, 8849, 2015.
    [15] J. Sahu, K. Panda, B. Gupta, N. Kumar, P. A. Manojkumar, M. Kamruddin, “Enhanced tribo-chemical properties of oxygen functionalized mechanically exfoliated hexagonal boron nitride nanolubricant additives”, Materials Chemistry and Physics, Vol. 207 412-422, 2018.
    [16] M. Du, Y. Wu, X. Hao, “A facile chemical exfoliation method to obtain large size boron nitride nanosheets”, Crystal Engineering Communications, Vol. 15, pp. 1782-1786, 2013.
    [17] M. Du, X. Li, A. Wang, Y. Wu, X. Hao, M. Zhao, “One-step exfoliation and fluorination of boron nitride nanosheets and a study of their magnetic properties”, Angewandte Chemie International Edition, Vol. 126, pp. 3719-3723, 2014.
    [18] H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, “Thermal conductivity of polymer-based composites: fundamentals and applications”, Progress in Polymer Science Vol. 59, pp. 41-85, 2016.
    [19] J. W. Zha, Z. M. Dang, W. K. Li, Y. H. Zhu, G. Chen, “Effect of micro-Si3N4-nano-Al2O3 co-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, pp. 1989-1996, 2014.
    [20] Y. Zhang, W. Yu, L. Zhang, J. Yin, J. Wang, H. Xie, “Thermal conductivity and mechanical properties of low-density silicone rubber filled with Al2O3 and graphene nanoplatelets”, Journal of Thermal Science and Engineering Applications, Vol. 10, pp. 1-5, 2018.
    [21] W. Zhou, S. Qi, C. Tu, “Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber”, Journal of Applied Polymer Science, Vol. 104, pp. 1312-1318, 2007.
    [22] 邱國展,「熱界面材料開發概論」,工業材料雜誌,第217期,2005。
    [23] H. Wu, R. K. Michael, “Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization”, ACS Applied Materials & Interfaces, Vol. 7, pp. 5915-5926, 2015.
    [24] Y. M. Chen, J. M. Ting, “Ultra high thermal conductivity polymer composites”, Carbon, Vol. 40, pp. 359-362, 2002.
    [25] Y. Song, J. Yu, L. Yu, F. E. Alam, W. Dai, C. Li, N. Jiang, “Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets”, Materials & Design, Vol. 88, pp. 950-957, 2015.
    [26] C. Li, B. Liu, Z. Gao, H. Wang, M. Liu, S. Wang, “Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties”, Journal of Applied Polymer Science, Vol. 135, 46454, 2018.
    [27] J. P. Hong, S. W. Yoon, T. Hwang, J. S. Oh, S. C. Hong, Y. Lee, J. D. Nam, “High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers”, Thermochimica Acta, Vol. 537, pp. 70-75, 2012.
    [28] B. X. Du, B. Cui, “Effects of thermal conductivity on dielectric breakdown of micro, nano sized BN filled polypropylene composites”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, pp. 2116-2125, 2016.
    [29] J. P. Cheng, T. Liu, J. Zhang, B. B. Wang, J. Ying, F. Liu, X. B. Zhang, “Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites”, Applied Physics A, Vol. 117, pp. 1985-1992, 2014.
    [30] M. Kozako, Y. Okazaki, M. Hikita, T. Tanaka, “Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity”, In Solid Dielectrics (ICSD), IEEE International Conference, pp. 1-4, 2010.
    [31] S. Yu, P. Hing, X. Hu, “Thermal conductivity of polystyrene-aluminum nitride composi”, Composites Part A: Applied Science and Manufacturing, Vol. 33, pp. 289-292, 2001.
    [32] L. Gan, Shang, S. Yuen, C. W. M. Jiang, “Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties”, Composites Part B: Engineering, Vol. 69, pp. 237-242, 2015.
    [33] W. Y. Zhou, S. H. Qi, H. Z. Zhao, N. L. Liu, “Thermally conductive silicone rubber reinforced with boron nitride particle”, Polymer Composites, Vol. l28, pp. 23-28, 2007.
    [34] S. Kemaloglu, G. Ozkoc, A. Aytac, “Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites”, Thermochimica Acta, Vol. 499, pp. 40-47, 2010.
    [35] J. Shu, R. Xia, J. Qian, J. Miao, L. Su, M. Cao, J. Chen, “Preparation and study on thermal conductive composites of chlorinated polyethylene rubber reinforced by boron nitride particles”, Macromolecular Research, Vol. 24, pp. 640-644, 2016.
    [36] J. Gu, X. Meng, Y. Tang, Y. Li, Q. Zhuang, J. Kong, “Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities”, Composites Part A: Applied Science and Manufacturing, Vol. 92, pp. 27-32, 2017.
    [37] A. Pakdel, Y. Bando, D. Golberg, “Nano boron nitride flatland”, Chemical Society Reviews, Vol. 43, pp. 934-959, 2014.
    [38] H. S xahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, S. Ciraci, “Monolayer honeycomb structures of group-IV elements and III-V binarycompounds: first-principles calculations”, Physical Review B, Vol. 80, 155453, 2009.
    [39] C. Li, Y. Bando, C. Zhi, Y. Huang, D. Golberg, “Thickness-dependent bending modulus of hexagonal boron nitride nanosheets”, Nanotechnology, Vol. 20, 385707, 2009.
    [40] Y. Wang, Z. X. Shi, J. Yin, “Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole”, Journal of Materials Chemistry, Vol. 21, 11371, 2011.
    [41] M. S. R. N. Kiran, K. Raidongia, U. Ramamurty, C. N. R. Rao, “Improved mechanical properties of polymer nanocomposites incorporating graphene-like BN: dependence on the number of BN layers”, Scripta Materialia, Vol. 64, pp. 592-595, 2011.
    [42] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers”, Nano Letters, Vol.10, pp. 3209-3215, 2010.
    [43] Y. Zhao, X. Wu, J. Yang, X. C. Zeng, “Oxidation of a two dimensional hexagonal boron nitride monolayer: a first principles study”, Physical Chemistry Chemical Physics, Vol. 14, pp. 5545-5550, 2012.
    [44] Y. Shi, C. Hamsen, X. Jia, K. Kim, A. Reina, M. Hofmann, A. Hsu, K. Zhang, H. Li, Z. Y. Juang, M. S. Dresselhaus, L. J. Li, J. Kong, “Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition”, Nano Letters, Vol. 10, pp. 4134-4139, 2010.
    [45] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, 063124, 2007.
    [46] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, “Synthesis of monolayer hexagonal boron nitride on cu foil using chemical vapor deposition”, Nano Letters, Vol. 12, pp. 161-166, 2012.
    [47] S. V. Morozov, K. S. Novoselov, F. Schedin, D. Jiang, A. A. Firsov, A. K. Geim, “Two-dimensional electron and hole gases at the surface of graphite”, Physical Review B, Vol. 72, 201401, 2005.
    [48] Y. Yao, Z. Lin, Z. Li, “Large-scale production of two-dimensional nanosheets”, Journal of Materials Chemistry, Vol. 22, pp. 13494-13499, 2012.
    [49] R. C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, “Microplasma processed ultrathin boron nitride nanosheets for polymer nanocomposites with enhanced thermal transport performance”, ACS Applied Materials & Interfaces, Vol. 8, pp. 13567-13572, 2016.
    [50] Z. Lin, A. Mcnamara, Y. Liu, K. Moon, C.P. Wong, “Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation”, Composites Science and Technology, Vol. 90, pp. 123-128, 2014.
    [51] X. Cui, P. Ding, N. Zhuang, L. Shi, N. Song, S. Tang, “Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and oraphene nanosheets:a morphology-promoted synergistic effect”, ACS Applied Materials & Interfaces, Vol. 7, pp. 19068-19075, 2015.
    [52] X. Wang and P. Wu, “Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets”, ACS Applied Materials & Interfaces, Vol. 9, pp. 19934-19944, 2017.
    [53] X. Wu, Z. Zhao, Y. Sun, H. Li, C. Zhang, Y. Wang, S. Zheng, H. Zhang, “Few-layer boron nitride nanosheets: preparation, characterization and application in epoxy resin”, Ceramics International, Vol. 2, pp. 2274-2278, 2017.
    [54] M. Wang, Z. Jiao, Y. Chen, X. Hou, L. Fu, Y. Wu, S. Li, N. Jiang, J. Yu, “Enhanced thermal conductivity of poly (vinylidene fluoride)/boron nitride nanosheet composites at low filler content”, Composites Part A, Vol. 109, pp. 321-329, 2018.
    [55] T. Wang, M. Wang, L. Fu, Z. Duan, Y. Chen, X. Hou, Y. Wu, S. Li, L. Guo, R. Kang, N. Jiang, J. Yu, “Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets”, Scientific Reports, Vol. 8, pp. 1557, 2018.
    [56] G. Sun, J. Bi, W. Wang, J. Zhang, “Enhancing mechanical properties of fused silica composites by introducing well-dispersed boron nitride nanosheets”, Ceramics International, Vol. 44, pp. 5002-5009, 2018.
    [57] K. Kim, J. Kim, “Exfoliated boron nitride nanosheet/MWCNT hybrid composite for thermal conductive material via epoxy wetting”, Composites Part B, Vol. 140, pp. 9-15, 2018.
    [58] C. P. Fung, P. C. Kang. “Multi-response optimization in friction properties of PBT composites using taguchi method and principle component analysis”, Journal of materials processing technology, Vol. 170, pp. 602-610, 2005.
    [59] L. Botti and N. Peypoch, “Multi-criteria ELECTRE method and des-tination competitiveness”, Tourism Management Perspectives, Vol. 6, pp. 108-113, 2013.
    [60] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, “Review of thermal conductivity in composites: mechanisms, parameters and theory”, Progress in Polymer Science, Vol. 61, pp. 1-28, 2016.
    [61] M. Xu, D. Fujita, H. Chen, N. Hanagata, “Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation”, Nanoscale, Vol. 3, pp. 2854-2858, 2011.
    [62] M. Turkoglu, I. Sahin, T. San, “Evaluation of hexagonal boron nitride as a new tablet lubricant”, Pharmaceutical Development and Technology, Vol. 10, pp. 381-388, 2005.
    [63] R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, S. M. Hussain, “Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique”, Toxicological Sciences, Vol. 101, pp. 239-253, 2008.
    [64] J. Wang, “Nanomaterial-based electrochemical biosensors”, Analyst, Vol. 130, pp. 421-426, 2005.
    [65] A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces”, Physical Review Letters, Vol. 75, 3918, 1995.
    [66] Z. Zeng, T. Sun, J. X. Zhu, “An effective method for the fabrication of few-layer-thick inorganic nanosheets”, Angewandte Chemie International Edition, Vol. 51, pp. 9052-9056, 2012.
    [67] X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, “Exfoliation of hexagonal boron nitride by molten hydroxides”, Advanced Materials, Vol. 25, pp. 2200-2204, 2013.
    [68] K. A. Savin, “Chapter 5-radicals and radical anions”, Writing Reaction Mechanisms in Organic Chemistry (Third Edition), pp. 237-292, 2014.
    [69] B. F. Dillman, N. Y. Kang, J. L. Jessop, “Solventless synthesis and free-radical photopolymerization of a castor oil-based acrylate oligomer”, Polymer, Vol. 54, pp.1768-1774, 2013.
    [70] A. Lopez, E. Degrandi, E. Canetta, J. L. Keddie, C. Creton, J. M. Asua, “Simultaneous free radical and addition miniemulsion polymerization: effect of the diol on the microstructure of polyurethane-acrylic pressure-sensitive adhesives”, Polymer, Vol. 52, pp. 3021-3030, 2011.
    [71] G. Xu, F. D. Blum, “Surfactant-enhanced free radical polymerization of styrene in emulsion gels”, Polymer, Vol. 49, pp. 3233-3238, 2008.
    [72] H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, B. Chen, “Thermal conductivity of polymer-based composites: fundamentals and applications”, Progress in Polymer Science, Vol. 59, pp. 41-85, 2016.
    [73] 曹彰明,「矽橡膠的製造、特性與應用」,高分子工業,第106 期,2003。
    [74] 張仲卿,侯順雄,張進寬,杜鳳棋,「熱傳遞」,高立圖書有限公司,2003。
    [75] T. L. Bergman, F. P. Incropera, A. S. Lavine, D. P. DeWitt, “Introduction to heat transfer”, John Wiley & Sons, 2011.
    [76] Y. C. Liao, “Applying taguchi quality engineering to explore the optimum parameters of semi-finished products-take rubber in-dustry as an example”, National Yunlin University of Science and Technology, Taiwan, 2015.
    [77] A. M. Mohamed, R. Jafari, M. Farzaneh, “An optimization of super-hydrophobic polyvinylidene fluoride/zinc oxide materials using taguchi method”, Applied Surface Science, Vol. 288, pp.229-237, 2014.
    [78] L. C. Hsu, “Preparation of silica nanoparticles by precipitation using taguchi method”, Yuan Ze University, Taiwan, 2003.
    [79] H. H. Lee, “Taguchi methods: principles and practices of quality design”, Gau Lih Book, Taiwan, 2013.
    [80] A. Bhattacharya, S. Das, P. Majumder, A. Batish, “Estimating the effect of cutting parameters on surface finish and power consump-tion during high speed machining of AISI 1045 steel using Taguchi design and ANOVA”, Production Engineering, Vol. 3, pp. 31-40, 2009.
    [81] M. Altan, “Reducing shrinkage in injection moldings via the taguchi, ANOVA and neural network methods”, Materials and Design, Vol. 31, pp. 599-604, 2010.
    [82] B. Roy, “The outranking approach and the foundations of ELECTRE methods”, Theory and Decision, Vol. 31, pp. 49-73, 1991.
    [83] E. Kuram, E. Tasci, A. I. Altan, M. M. Medra, F. Yilmaz, B. Ozcelik, “Investigating the effects of recycling number and injec-tion parameters on the mechanical properties of glass-fibre rein-forced nylon 6 using taguchi method”, Materials & Design, Vol. 49, pp. 139-150, 2013.
    [84] H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, “Raman studies of carbon nanotubes”, Chemical Physics Letters, Vol. 202, pp. 509-512, 1993.
    [85] A. Apicella, “Effect of chemorheology on epoxy resin properties”, Developments in Reinforced Plastics-5, pp. 151-180, 1986.
    [86] A. Saleh and A. Ajlan, “Measurements of thermal properties of insulation materials by using transient plane source technique”, Applied Thermal Engineering, Vol. 26, pp. 2184-2191, 2006.
    [87] J. Kim, E. Yamasue, H. Okumura, K. N. Ishihara, C. Michioka, “Structures of boron nitride intercalation compound with lithium synthesized by mechanical milling and heat treatment”, Journal of Alloys and Compounds, Vol. 685, pp. 135-141, 2016.
    [88] A. T. Seyhan, Y. Göncü, O. Durukan, A. Akay, N. Ay, “Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites”, Journal of Solid State Chemistry, Vol. 249, pp. 98-107, 2017.
    [89] K. L. Marsh, M. Soulimana and R. B. Kaner, “Co-solvent exfoliation and suspension of hexagonal boron nitride”, Chemical Communications, Vol. 51, pp. 187-190, 2015.
    [90] Y. L. Gu, M. T. Zheng, Y. L. Liu, Z. L. Xu, “Low-temperature synthesis and growth of hexagonal boron-nitride in a lithium bromide melt”, Journal of the American Ceramic Society, Vol. 90, pp. 1589-1591, 2007.
    [91] C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie, T. Sekigushi, “Phonon characteristics and cathodolumininescence of boron nitride nanotubes”, Applied Physics Letters, Vol. 86, 213110, 2005.
    [92] D. O. Sullivan, M. Poneman, P. Descamps, F. Cambier, A. Leriche, B. Thierry, “Optimisation of alumina-silicon carbide dispersions and the fabrication of nanocomposite ceramic materials”, Key Engineering Materials, Vol. 99, pp. 247-256, 1995.
    [93] R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures”, Small, Vol. 7, 465-468, 2011.
    [94] R. J. Nemanich, S. A. Solin, R. M. Martin, “Light scattering study of boron nitride microcrystals”, Physical Review B, Vol. 23, pp. 6348-6356, 1981.
    [95] X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, Q. Qian, “Exfoliation of hexagonal boron nitde by molten hydroxides”, Advanced Materials, Vol. 25, pp. 2200-2204, 2013.

    無法下載圖示 全文公開日期 2023/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE