簡易檢索 / 詳目顯示

研究生: 林育緯
Yu-Wei Lin
論文名稱: 不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響
The Effects of Different Alkali Solution on Engineering Properties of Slag-and-Fly-Ash-Based Geopolymer
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-Tao Chen
張建智
Jiang-Jhy Chang
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 178
中文關鍵詞: 無機聚合物飛灰爐石粉氫氧化鈉氫氧化鉀
外文關鍵詞: geopolymer, fly ash, slag, sodium hydroxide, potassium hydroxide.
相關次數: 點閱:341下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以爐石粉為無機聚合物主要基材,以不同重量比之飛灰(0%、10%、30%、50%)取代,鹼激發劑僅採用氫氧化鈉及氫氧化鉀作為激發活性之激發劑,以兩種鹼激發濃度(4M、6M及8M)與三種水固比(0.35及0.4)為主要試驗變數,以探討兩種不同溶液對鹼激發爐石飛灰混合比漿體之新拌性質與硬固工程性質,並利用掃描式電子顯微鏡觀察其微觀結構變化。

    研究結果顯示:(1)兩種激發劑所拌和之爐石飛灰無機聚合物流動性均隨水固比增加而增加,使用氫氧化鈉與氫氧化鉀所得最高流度分別為125%及147.5%; (2) 使用氫氧化鈉可將初終凝時間分別由23減至16分鐘及45減至35分鐘,使用氫氧化鉀則可將初終凝時間分別由40減至21分鐘及70減至50分鐘; (3)使用氫氧化鈉與氫氧化鉀所得最高水化溫度分別為102oC及85oC; (4) 無機聚合物試體抗壓強度、超音波波速、動態彈性模數、動態剪力模數、熱傳導係數皆會因提高水固比與飛灰量而降低; (5)當水固比提高時,所有試體之乾縮量均降低,使用氫氧化鈉及氫氧化鉀可減少乾縮量之最高值分別為78.5%及64.8%; (6) 當飛灰量取代量達到50%時,掃描式電子顯微鏡之無機聚合物漿體顯微結構顯示有較多未參與化學反應之飛球顆粒。


    This research uses the furnace slag as the main ingredient with different replacement ratios by weight of fly ash (9%, 10%, 30% and 50%) to make the geopolymer. Only the sodium hydroxide and potassium hydroxide were used as the alkali activator. Three types of activator concentrations (4M, 6M and 8M) and two types of water-to-solid ratios (0.35 and 0.4) were selected as the main experimental variables to study the effects of two kinds of alkali activator on the engineering properties at the fresh and hardened states for the slag-and-fly-ash-based geopolymer paste. The microstructural observation of the hardened of geopolymer was examined with Scanning Electron Microscopy.

    The research results show that: (1) The flowability of the slag-and-fly-ash-based geopolymer with two kinds of alkali activators increase with the increase of water-to-solid ratio. The highest values of flowability using sodium hydroxide and potassium hydroxide are 125% and 147.5%, respectively. (2) Using sodium hydroxide can reduce the initial and final setting times from 23 to 16 minutes and 45 to 35 minutes, respectively. But using potassium hydroxide reduces the initial and final setting times from 40 to 21 minutes and 70 to 50 minutes, respectively. (3) The highest temperatures of polymerization using sodium hydroxide and potassium hydroxide are102oC and85oC, respectively. (4) The compressive strength, ultrasonic pulse speed, dynamic elastic and shear moduli and thermal conductivity of all geopolymer specimens. (5) The dry shrinkage of all geopolymer specimens reduces as the water-to-solid ratio increases. The highest values of shrinkage reduction using sodium hydroxide and potassium hydroxide are 78.5% and 64.8%, respectively. (6) When the replacement ratio of fly ash is 50%, more number of particles of fly ash which are not involved in chemical reaction during polymerization process is identified in the microstructural photos of geopolymer paste from the Scanning Electronic Microscopy.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究內容及流程 2 第二章文獻回顧 4 2.1 前言 4 2.2 無機聚合物之發展 4 2.3 無機聚合物之聚合反應及機理 5 2.3.1 無機聚合物之結構型態 6 2.4. 爐石粉 7 2.4.1爐石生產 7 2.4.2 爐石的成分 7 2.4.3 爐石化學性質 8 2.4.4 爐石粉之顆粒性質 9 2.4.5 爐石在混凝土之運用 10 2.4.6 鹼激發爐石 10 2.4.7 不同爐石粉對鹼激發溶液的影響 12 2.5飛灰 14 2.5.1 飛灰之產生 14 2.5.2飛灰之分類 14 2.5.3飛灰資源化使用情形 15 2.5.4飛灰在混凝土之運用 15 2.5.5飛灰之化學性質 16 2.5.6飛灰之物理性質 16 2.5.7 鹼激發飛灰 18 2.6 鹼性激發溶液 19 2.6.1 鹼激發濃度的影響 20 2.6.2 拌合時間與鹼激發劑添加方式之影響 21 2.7 水玻璃模數比例與不同鹼激發劑之影響 22 2.8 液固比之影響 23 2.9 環境養護與時間對無機聚合物之影響 24 2.10 無機聚合物之體積穩定性 25 2.10.1 體積收縮發生之機制 26 2.10.2 無機聚合物之體積收縮現象 26 2.11. 無機聚合物抑制乾縮的方法 27 2.11.1 無機聚合物之養護 27 2.11.2 適度的鹼性激發劑種類與濃度 28 2.12.無機聚合物之水化熱 28 2.12.1 鹼激發溶液對水化熱之影響 29 2.12.2 鹼性激發劑劑量對水化熱之影響 29 2.12.3 無機聚合物對水化熱之影響 30 2.13 無機聚合物鹼骨材反應 30 2.14 無機聚合物之優缺點 31 2.14.1 鹼激發爐石之優缺點 32 2.15 無機聚合物之其他方法 33 第三章試驗計畫 46 3.1 試驗內容與流程 46 3.2 實驗材料 46 3.3 試驗儀器與設備 47 3.4 各項實驗變化與項目 50 3.4.1 試驗內容說明 50 3.4.2 試體編號及項目說明 51 3.5 無機聚合物試體拌合與製作 52 3.5.1無機聚合物拌合程序 52 3.6試驗方法 53 3.6.1 新拌性質試驗 53 3.6.2 硬固性質試驗 54 第四章結果與討論 74 4.1 無機聚合物漿體各參數變化之新拌性質 74 4.1.1 流度 74 4.1.2 凝結時間 76 4.1.3 水化熱 77 4.2無機聚合物漿體各參數變化之硬固性質 79 4.2.1 抗壓強度 79 4.2.2 超音波波速 82 4.2.3 共振頻率-動態彈性模數與動態剪力模數 85 4.2.4熱傳導係數 89 4.2.5體積穩定性 91 4.3 無機聚合物之微觀結構 93 4.3.1 掃描式電子顯微鏡之微觀結構分析 93 第五章結論與建議 165 5.1 結論 165 5.2 建議 167 參考文獻 168

    1. Davidovits, J., “Mineral Polymers and method of making them,”USA Paten, No.4, pp. 349, 386 (1982).
    2. Davidovits, J., “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139 (1994).
    3. Dombrowski, K. A., and Buchwald, M. Weil, “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042 (2007).
    4. Lloyd, R. R., Provis, J. L., and Van Deventer, J. S. J., “Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 – 631 (2009).
    5. 陳志賢,「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程研究所 (2009)。
    6. Shi, C., Krivenko, P. V., and Roy, D., “Alkali-activated Cement and Concrete, London and New York: Taylor & Francis.”(出處-年份)
    7. Li, C., Sun, H., and Li, L., “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, doi: 10.1016 (2010).
    8. Xu, H., Van Deventer, J. S. J., and Luckey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp.3749-3756 (2001).
    9. 李元凱,「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系 (2008)。
    10. 林瑋倫,「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系(2009)。
    11. 陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,國立台灣科技大學營建工程系 (2010)。
    12. Xu, H., and Van Deventer, J. S. J. “The Geopolymerization of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, No. 3, pp.247 -266 (2000).
    13. Van Jaarsveld, J. G. S., Van Deventer, J. S. J. and Lorenzen, L., “The potential use of geopolymeric materials to immobilize toxic metals: Part I,” Theory and application, Minerals Engineering, Vol. 10, No.7, pp.659-669 (1997).
    14. 黃立遠,「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系 (2010)。
    15. Davidovits, J., “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp.9-40 (1999).
    16. 黃兆龍,「混凝土性質與行為」,詹氏書局 (1999)。
    17. Maragkos, I., Giannopoulou, I. P., and Panias, D., “Synthesis of ferronickel slag-based geopolymers,” Minerals Engineering, Vol. 22, No. 2, pp.196-203 (2009).
    18. 黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社」 (2007)。
    19. Shi, C., and Li, Y., “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19, No.4, pp.527 -533 (1989).
    20. Palomo, A., Grutzeck, M. W., and Blanco, M. T., “Alkali-activated fly ashes a cement for the future,” Minerals Engineering, Vol. 29, No. 8, pp.1323 - 1329 (1999).
    21. Puertas, F., Palacios, M., and Gil-Maroto, A. and Vazquez, T., “Alkali - aggregate behavior of alkali - activated slag mortars: effect of aggregate type,” Cement and Concrete Composite, Vol. 31, No. 5, pp. 277-284 (2009).
    22. Bakharev, T.,Sanjayan, J. G., and Chen, Y. B., “Alkali activation of Australian slag cements,”Cement and Concrete Research, Vol. 29, No. 1, pp.113-120 (1999).
    23. Collins, F. G., and Sanjayan, J. G., “Workability and mechanical properties of alkali activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 3, pp.113 -120 (1999).
    24. Wang, S. D., Scrivener, K. L., and Pratt, P. L., “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, Vol. 24, No. 6, pp. 1033–1043 (1994).
    25. Shi, C., and Day, R. L., “Selectivity of alkaline activators for the activation of slag,” Cement, Concrete and Aggregates, Vol. 18, No. 1, pp. 8-14 (1996).
    26. Shi, C., and Li, Y., “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19, No.4, pp.527 -533 (1989).
    27. 石悅欽,「利用飛灰與石灰改良淡水紅土之工程性質研究」,淡江大學土木工程研究所碩士論文,台北,民國86年。
    28. 行政院公共工程委員會,公共工程飛灰混凝土使用手冊,台北,民國88年。
    29. 蒲心誠,楊長輝,「高強度剪爐渣(JK)流態混凝土研究」,混凝土,第18~30頁,1994年。
    30. Shi, C., and Day, R. L., “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 26, No. 3, pp.439-447 (1996).
    31. Shi, C., and Day, R. L., “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 25, No.6, pp.1333-1346 (1995).
    32. Song, S., and Jennings, H. M., “Pore solution chemistry of alkali-activated groud granulated blast-furnace slag,” Cement and Concrete Research, Vol. 29, No. 2, pp.159-170 (1999).
    33. Glukivski, V. D., Alkali-earth binder and concrete produced with them, USSR, Russian, Visheka shkola, Kiev (1979).
    34. Fernandez-Jimenez, A., Palomo, J.G.,Puertas,F., ”Alkali-Activated Slag Mortars Mechanical Strength Behaviour,”Cement and Concrete Research, 29, pp.1313-1321 (1999).
    35. Shi, C., Day, R.L., ”Some Factors Affecting Early Hydration of Alkali-SlagCements,”Cement and Concrete Research, 26, pp.439-417 (1996).
    36. 馬鴻文、楊靜、任玉峰、凌發科,「礦物聚合材料;研究現狀與發展前景,地學前緣」,第9卷第4期,第397~407頁2002年。
    37. Brough, A. R., Holloway, M., and Sykes, J. and Atkinson, A., “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, Vol. 30, No. 9, pp.1375-1379 (2000).
    38. Komnitasa, K., Zaharaki, D., and Perdikatsis, V., “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,”Journal of Hazardous Materials, Vol. 161, No. 2-3, pp.760–768 (2009).
    39. Phair, J. W., and Van Deventer J. S. J., “Effect of silicate actvator pH on the leach and material characteristics of waste-based inorganic polymers,” Minerals Engineering, Vol. 14, No. 3, pp.289–304 (2001).
    40. 馬鴻文、凌發科、楊靜、王剛,「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583頁 (2002)。
    41. 鄭娟榮,周同和,劉麗娜,「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064 - 1067頁(2007)。
    42. Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp.1619-1625 (1999).
    43. Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., Alkali-Activated Slag Mortars Mechanical Strength Behaviour, Cement and Concrete Research, 29, pp.1313-1321 (1999).
    44. Kong, D. L. Y., and Sanjayan, J. G., “Damage behavior of geopolymer composite exposed to elevated temperatures,” Cement and Concrete Research, Vol. 30, No. 10, pp.986-991 (2008).
    45. Ravikumar, D., Peethamparan, S., and Neithalath, N., “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder,” Cement and Concrete Composites, Vol. 32, No. 6, pp.399-410 (2010).
    46. Wang, S. D., Pu, X. C., Scrivener, K. L., and Pratt, P. L., “Alkali - activated cement and concrete. A review of properties and problems,” Advances in Cement Research, Vol. 7, pp. 93-102 (1995).
    47. 李宜桃(2003),「鹼活化還原渣收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程研究所。
    48. Palacios, M., and F. Puertas, “Effect of shrinkage-reducing admixtures on the properties of alkali - activated slag mortars and pastes,”Cement and Concrete Research, Vol.37, No. 3, pp.691 – 702 (2007).
    49. Shi, Caijun, “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp.1789-1799 (1996).
    50. Collins, F., and Sanjayan, J. G., “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete, ” Cement and Concrete Research, Vol. 30, No. 9, pp.1401-1406 (2000).
    51. Davidovits, J., Global Warming Impact on the Cement and AggregatesIndustries, World Resource Review, 6(2), 263-278, 1994.
    52. Davidovits, J., Fire proof Geopolymeric, St. Quentin, FranceCordi-Geopolymere, pp. 165 – 170 (1999).
    53. Davidovits, J., Geopolymer chemistry and applications, France, Saint-Quentin, Institut Geopolymere, pp.384 –385 (2008).
    54. Phair, J. W., Van Deventer, J. S., and Smith, J. J. D., “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers,” Applied Geochemistry, Vol. 19, No. 3, pp.423–434 (2004).
    55. Puertas, F. MartoAnez-RamoArez, S. Alonso, S. and VaAzquez, T. “Alkali-activated fly ash/slag Cement Strength behaviour and hydration products”, Cement and Concrete Research 30 pp.1625-1632 (2000).
    56. 楊仁佑(2011),「低溫養護對爐石基無機聚合物工程性質之影響」,碩士論文,國立台灣科技大學營建工程系。
    57. Cengiz Duran Atiş, Cahit Bilim, Ӧzlem Celik, and Okan Karahan, ”Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, “ Construction and Buiding Materials, Vol. 23, pp. 548 – 555 (2009).
    58. 王峰、張耀君、宋強、徐德龍,「NaOH鹼激發礦渣地質聚合物的研究」,第31卷第3期-1000-809803-00009-04,(2008)。
    59. 王亞超、張耀君、徐德龍,「鹼激發硅灰-粉煤灰基礦物聚合物的研究」,第30卷第1期,1001-1625 01-0050-05 (2011)。
    60. Komljenovi’c M, Bascarevic Z, and Bradic V. “Mechanical and microsutructural properties of alkali-activated fly ash geopolymers,” Journal of Hazardous Materials, pp.35-42 (2010).
    61. Winnefeld F,Leemann A, and Lucuk M,et al. ”Assessment of phase formation in alkali activated low and high calium fly ashes in building materials“ .Construction and Building Materials, pp.1981-1989 (2008).
    62. Escalante-Garia J I, Wspinoza-Perez L J, and Gorokhovshy A, et al.”Coarse blast furnace of Portland cement and as an alkali activated cement,”Construction and building materials, pp.2511-2517 (2009).
    63. Anonia A, Neto M, Cincotto M A, et al.“Drying and autogenous shringkage of pastes and mortars with activated slag cement, “Cement and Concrete Research , pp.565-574 (2008).
    64. 諸華軍,姚曉,張祖華,「礦渣摻量對偏高嶺土鹼激發過程和產物性能的影響」,第31卷第4期1000-809804-0016-03 (2008)。
    65. Femandez-Jimennez A., and Palomo A., “Composition and microstructure of alkali activated fly ash binder.Effect of the activator, ” Cement and Concrete Research , pp.1984-1992 (2005).
    66. Ivan Diaz-Loya E, Erez N. Allouche, and Saiprasad Vaidya, ”Mechanical Properties of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal Title no.108-M32 (2011).
    67. Hwai-Chung Wu and Peijiang Sun, “Effect of Mixture Compositions on Workability and Strength of Fly Ash-Based Inorganic Polymer Mortar, “ ACI Materials Journal Title no.107-M62 (2011).
    68. Nazari Ali, Hamid Khanmohammadi, Mohammad Amini, Hadi Hajiallahyari, and Ali Rahimi, ”Production geopolymers by Portland cement: Designing the main parameters’effects on compressive strength by Taguchi method, “ Materials and Design pp.43–49 (2012).
    69. Maochieh Chi, ”Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, “Construction and Building Materials pp.240–245 (2012).
    70. Hamdy El-Didamony, Ahmed A. Amer, and Hamdy Abd Ela-ziz, “Properties and durability of alkali-activated slag pastes immersed in sea water,” Ceramics International 38 (2012) 3773–3780 (2012).
    71. Deepak Ravikumar, Narayanan and Neithalath, “Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH,” Cement & Concrete Composites, Cement & Concrete Composites (2012).
    72. Aperador W, de Gutierrez R M, Bastidas D M. ”Steel corrosion behaviour in carbonated alkali-activated slag concrete, “Corrosion seience, pp. 2027-2033 (2009).
    73. Pueaas F., Palaci M., and gil-Mareto A.,”Alkali-aggregate behaviour ofalkali-activated slag moMam:Effects of aggregate type,”Cement and Concrete Composit, pp. 277-284 (2009).
    74. Sakulich A R, Anderson E, and Scharuer C., “Mechanical and mierestruetural characterization of an alkali-activated slag/limestone fine aggregate concrete, “Construetion and Building Materials, pp. 295l-2967 (2009).
    75. Oh J E, Monteiro P J M, Jan SS S,et al, ”The evolution of strength and crystalline phases for alkali—activated ground blast fumac slag and fly ash-based geopolymems, “Cement and Concrete Research, pp. 189-196 (2010).
    76. Jin Wanga, Xiu-ling Wu, Jun-xia Wang, Chang-zhen Liu, Yuan-ming Lai, Zun-ke Hong, and Jian-ping Zheng, ”Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials, “Microporous and Mesoporous Materials , pp. 186–191 (2012).
    77. Liew, Y.M., H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and C.Y. Heah, “Processing and characterization of calcined kaolin cement powder, “Construction and Building Materials, pp. 794–802 (2012).
    78. Temuujin, J., A. Minjigmaa, M. Lee, N. Chen-Tan, A. van Riessen,” Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions, “Cement and Concrete Composites 33, pp. 1086–1091(2011).

    QR CODE