簡易檢索 / 詳目顯示

研究生: 莊培萱
PEI-HSUAN CHAUNG
論文名稱: 電弧爐還原碴於二氧化碳吸收與資源化應用之研究
Application of Steel Reducing Slag from Electric Arc Furnace on Carbon Dioxide Absorption and Resource Utilization
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
郭俞麟
Yu-Lin Kuo
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 131
中文關鍵詞: 二氧化碳吸收碳酸化電弧爐還原碴
外文關鍵詞: CO2 absorption, electric arc furnace, carbonation, Steel Reducing Slag
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢鋼鐵經電弧爐高溫熔煉後所產生之鋼鐵還原碴(stainless steel reducing slag , SRS),其蘊藏高比例游離氧化鈣,應用此特性為二氧化碳吸收劑,並將安定化之電爐爐還原碴拌混水泥製成混凝土,改善混凝土脹裂之問題,以達到資源再生與二氧化碳利用之目的。
    本研究運用半批式及填充床反應器,試驗不同實廠電弧爐還原碴之碳酸化反應,研究此固-液-氣三相反應,探討於常壓二氧化碳氣氛下,溫度、含水量及反應時間的最佳碳酸化條件,並以熱重分析儀、非分散式紅外線二氧化碳濃度偵測儀、場發射掃描式電子顯微鏡-能量散射光譜儀等儀器確認其碳酸化效果。研究結果顯示,洗選電弧爐還原碴於小型半批式反應器能有效吸收二氧化碳量,可達0.1338 gCO2/gSRS。進一步建立填充床反應器,以模擬鋼鐵廠出廠料源之直接運用情形,使用0.5mm以下之電弧爐還原碴(DS及US),調整其總含水量為20±3 wt%時,為最佳碳酸化條件, US與DS於常溫常壓下吸收量分別可達0.1與0.075 g CO2/g SRS,進一步依據CNS1258 及CNS 15286 規範進行試驗,混凝土熱壓膨脹實驗結果顯示未安定電弧爐還原碴以20wt%摻混製成混凝土會產生膨脹破裂狀況,安定化後能將大幅將膨脹率降低至11.1%,而28天抗壓強度試驗中,亦符合法規限制255 kgf/cm2。可確認此最適化參數適用於不同電弧爐還原碴,並依以設計20升半批式反應裝置,實驗結果顯示高度實用性。


    The steel reducing slag (SRS) from electric arc furnace (EAF), byproduct of the steel industry, exhibits high potential for carbon dioxide absorption due to its plenty content of free-calcium oxide (f-CaO). The SRS will be stable after carbonization reaction, can be further applied as the additive of cement with low expansion ratio. The process is able to achieve the goal of resource recycle and CO2 utilization.
    In this study, SRS of different electric arc furnaces in steel factory was evaluated in the gas-solid-liquid reaction in semi-batch and packed bed reactor, respectively. The SRS reacted with pure carbon dioxide stream continuously under ambient condition. The effects of water contents, temperature, and reaction time on the carbonation efficiency for this process were systematically investigated in detail, where the degree of carbonization was determined by thermogravimetric analyzer (TGA), nondispersive infrared CO2 detector, and Field-emission scanning electron microscope equipped with energy dispersive spectroscopy. (FE-SEM-EDS). The results indicated that the CO2-absorption capacity of the pre-washed SRS was 0.1338 gCO2/gSRS in the small semi-batch reactor. A packed bed reactor was further designed and established for SRS raw material to simulate the filed condition. The largest CO2-absorption capacity of different SRS (US and DS) was obtained with adjusting the water content to 20±3 wt%, where the slag diameter is about 0.5 mm and reaction time is 2 hours. The maximum CO2 adsorption was 0.1 g CO2/g SRS-US and 0.075 g CO2/g SRS-DS under room temperature. Moreover, the properties of autoclave expansion and compressive strength for blended cement with using 20 wt% SRS as additive was examined according to CNS standards (CNS1258 and CNS 15286). The expansion ratio of carbonated US sample was only 11.1 %, which was much less than that of the raw material. The test result of compressive strength also met the requirement of regulation. Finally, the system was magnified to 20 liters semi-batch reactor to ensure the practicability of utilization of SRS from different EAF for CO2 absorption and the economic potential of carbonated product.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2鋼鐵爐碴 2 1.3二氧化碳捕獲及封存技術 5 1.3.1二氧化碳捕獲技術 5 1.3.2二氧化碳封存技術 6 1.4電弧爐還原碴誤用 8 1.5研究動機 9 第二章 文獻回顧 10 2.1電弧爐還原碴膨脹因素 10 2.2電弧爐還原碴安定化技術 11 2.3碳酸化反應路徑及機制 14 2.4碳酸化程序 16 2.4.1直接碳酸化 16 2.4.2間接碳酸化 18 2.5影響吸收能力參數 21 2.6電弧爐還原碴再利用技術評估 27 第三章 實驗方法與步驟 28 3.1實驗規劃 28 3.2藥品與儀器設備 29 3.2.1實驗藥品 29 3.2.2實驗原料 30 3.2.3儀器設備 31 3.3鋼鐵電弧爐還原碴物化性分析 35 3.3.1含水量、燒失量與堆積密度分析 35 3.3.2電弧爐還原碴成分分析 36 3.3.3毒物溶出試驗 36 3.3.4游離氧化鈣分析 39 3.4實驗步驟及反應裝置流程設計 44 3.4.1四口圓底瓶反應裝置 44 3.4.2填充床反應器 45 3.4.3半批式反應器 46 第四章 結果與討論 47 4.1洗選電弧爐還原碴初期碳酸化研究可行性 47 4.1.1攪拌對RS碳酸化之影響 47 4.1.2溫度對RS碳酸化之影響 48 4.1.3不同溫度碳酸化RS之熱重分析 49 4.1.4 RS微觀結構及成份定性分析 51 4.1.5 RS比表面積及孔徑分析 53 4.1.6 RS抗壓強度與熱壓膨脹分析 54 4.2建立不同鋼鐵廠出廠之電弧爐還原碴碳酸化最適操作參數 55 4.2.1填充床反應器空管測試 56 4.2.2反應溫度對US碳酸化效果影響 57 4.2.3相對濕度對US碳酸化效果影響 60 4.2.4添加水量對US碳酸化效果影響 61 4.2.5 US總含水量17.78%與27.78%碳酸化重複性分析 64 4.2.6不同鋼鐵廠電弧爐還原碴之碳酸化條件標準化流程建立 67 4.2.7運用DS新樣確立標準化流程可行度 69 4.2.8電弧爐還原碴碳酸化前後熱重分析 71 4.2.9電弧爐還原碴碳酸化前後微觀結構與成分定性分析 75 4.2.10電弧爐還原碴碳酸化前後比表面積分析 77 4.2.11電弧爐還原碴碳酸化前後二氧化碳吸收量分析 79 4.2.12電弧爐還原碴碳酸化前後抗壓強度與熱壓膨脹分析 81 4.3系統放大整合 85 4.3.1針筒式自動進樣幫浦系統設計 85 4.3.2填充床串聯式反應 87 4.3.3半批式反應器設計 89 4.3.4半批次反應裝置試車 90 第五章 結論及未來展望 93 5.1結論 93 5.1.1洗選電弧爐還原碴碳酸化研究可行性 93 5.1.2不同鋼鐵廠出產之電弧爐還原碴碳酸化最適操作參數 94 5.1.3系統程序整合放大 95 5.2未來與建議 96 參考文獻 98 附錄 105

    [1] J. Burck, F. Marten, C. Bals, N. Höhne, C. Frisch, N. Clement, K. Szu-Chi, “The climate change performance index 2018,” (2017), pp. 10-11.
    [2] 行政院環境保護署,環境資源資料庫。取自: https://erdb.epa.gov.tw/DataRepository/PollutionProtection/LitterDeclareStatistic.aspx?topic1=%E5%9C%B0&topic2=%E6%B1%A1%E6%9F%93%E9%98%B2%E6%B2%BB&subject=%E5%BB%A2%E6%A3%84%E7%89%A9.
    [3] 行政院環保署,廢棄物清理法,(2017)。
    [4] 中聯資源股份有限公司,轉爐石特性。取自: http://www.chc.com.tw/source.html.
    [5] 行政院公共工程委員會,公共工程高爐石混凝土使用手冊,行政院公共工程委員會出版,(2001)。
    [6] 中國鋼鐵股份有限公司與中龍鋼鐵股份有限公司,轉爐石瀝青混凝土鋪面使用手冊,中國鋼鐵股份有限公司與中龍鋼鐵股份有限公司聯合出版,(2017)。
    [7] 中國鋼鐵股份有限公司與中龍鋼鐵股份有限公司,轉爐石海事工程使用工程,中國鋼鐵股份有限公司與中龍鋼鐵股份有限公司聯合出版,(2017)。
    [8] 中華民國國家標準,CNS15310,瀝青鋪面混合料用鋼爐碴粒料,(2016)。
    [9] 財團法人臺灣營建研究院,電弧爐煉鋼氧化碴瀝青混凝土鋪面試行使用手冊,財團法人臺灣營建研究院出版,(2017)。
    [10] 經濟部工業局,電弧爐還原碴安定化技術手冊,經濟部工業局出版,(2017)。
    [11] 徐恆文,二氧化碳捕獲與封存領域,(2017),工研院綠能所資源應用技術組,科技部產學媒合平台-研發焦點。取自: https://iace.org.tw/f2/rdFocus/showDetail?id=22&searchCondition.category=%E7%A0%94%E7%99%BC%E7%84%A6%E9%BB%9E.
    [12] 經濟部能源局,2007年能源科技研究發展白皮書,經濟部能源局出版, (2007), p.321-341。
    [13] 張軍與李桂菊,二氧化碳封存技術及研究現狀,能源與環境,(2007), p. 33-35。
    [14] 張兵兵、王慧敏、曾尚紅與蘇海全,二氧化碳礦物封存技術現狀及展望,化工進展,第9期,(2012),p. 2075-2083。
    [15] 歐陽湘,二氧化碳地質封存,科學發展,第510期,(2015),p. 6-11。
    [16] 陳振川、黃然,「爐碴屋」何辜˙不當混砂才冒「痘」,聯合報,(2016)。
    取自: https://house.udn.com/house/story/5887/1550784.
    [17] 莊欽登,避免公共工程不當使用爐碴˙工程會已訂頒施工綱要規範,行政院公共工程委員會新聞稿,(2016)。取自:
    https://www.pcc.gov.tw/News_Content.aspx?n=C61062639C0CD29F&sms=21EF9CF82726C1BB&s=8A5F626E75439DC2.
    [18] 陳雅琳,爐渣屋‧崩裂啟示錄,三立新聞,(2016)。取自: https://www.youtube.com/watch?v=QSsifRdWvFU.
    [19] 台灣鋼聯股份有限公司,旋轉窯高溫冶煉製程說明,(2015)。取自: http://www.tsutw.com.tw/.
    [20] 李娟萍,鋼聯轉投資子公司台鋼資源,預計今年第三、第四季將投產,鉅亨網新聞中心,(2018)。取自: https://news.cnyes.com/news/id/4029180.
    [21] D. Bonenfant, L. Kharoune, S. Sauvé, R. Hausler, P. Niquette, M. Mimeault and M. Kharoune, “Molecular analysis of carbon dioxide adsorption processes on steel slag oxides,” International Journal of Greenhouse Gas Control, Vol. 3, No. 1, (2009), p. 20-28.
    [22] 蔣本基、潘述元、鍾岱均、陳劼立與蔣坤安,應用碳酸化程序進行二氧化碳捕集與煉鋼爐碴再利用,行政院科技部專題研究計畫(MOST 103-E-3113-007-002),(2015)。
    [23] N. L. Ukwattage, P. G. Ranjith, M. Yellishetty, H. H. Bui and T. Xu, “A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration,” Journal of Cleaner Production, Vol. 103, (2015), p. 665-674.
    [24] H. S. Fogler, “Elements of chemical reaction engineering,” 3rd Ed, Prentice Hall Professional International, Inc., New Jersey, USA, (1999), p. 581-601.
    [25] P. Li, S.-Y. Pan, S. Pei, Y. J. Lin and P.-C. Chiang, “Challenges and perspectives on carbon fixation and utilization technologies: An overview,” Aerosol and Air Quality Research, Vol. 16, No. 6, (2016), p.1327-1344.
    [26] 包煒軍、李會泉與張懿,溫室氣體CO2礦物碳酸化固定研究進展,化工學報,第58期第1卷,(2007),p. 1-9。
    [27] E. R. Bobicki, Q. Liu, Z. Xu and H. Zeng, “Carbon capture and storage using alkaline industrial wastes,” Progress in Energy and Combustion Science, Vol. 38, No. 2, (2012), p. 302-320.
    [28] R. R. Tamilselvi Dananjayan, P. Kandasamy and R. Andimuthu, “Direct mineral carbonation of coal fly ash for CO2 sequestration,” Journal of Cleaner Production, Vol. 112, (2016), p.4173-4182.
    [29] J. Yan, C. Zhao, P. Wang and P. Lu, “Studies on several fly ashes and their modified materials for CO2 capture,” Proceedings of the ASME 2017 Power Conference , No. 57601, (2017), p. V001T004A035, doi:10.1115.
    [30] E. E. Chang, A.-C. Chiu, S.-Y. Pan, Y.-H. Chen, C.-S. Tan and P.-C. Chiang, “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor,” International Journal of Greenhouse Gas Control, Vol. 12, (2013), p. 382-389.

    [31] C. Siriruang, P. Toochinda, P. Julnipitawong and S. Tangtermsirikul, “CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete,” Journal of Environmental Management, Vol.170, (2016), p. 70-78.
    [32] H. Y. Jo, J.-H. Ahn and H. Jo, “Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions,” Journal of Hazardous Materials, Vol. 241-242, (2012), p. 127-136.
    [33] M. H. El-Naas, M. El Gamal, S. Hameedi and A.-M. O. Mohamed, “Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions, sequestration using accelerated gas-solid carbonation of pre-treated eaf steel-making bag house dust,” Journal of Environmental Management, Vol. 156, (2015), p.218-224.
    [34] M.-S. Ko, Y.-L. Chen and J.-H. Jiang, “Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties,” Construction and Building Materials, Vol. 98, (2015), p. 286-293.
    [35] A. Ebrahimi, M. Saffari, D. Milani, A. Montoya, M. Valix and A. Abbas, “Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation,” Journal of Cleaner Production, Vol. 156, (2017), p. 660-669.
    [36] S. Yadav and A. Mehra, “Experimental study of dissolution of minerals and CO2 sequestration in steel slag,” Waste Management, Vol. 64, (2017), p. 348-357.
    [37] J.-g. Jiang, X.-j. Du, M.-z. Chen and C. Zhang, “Continuous CO2 capture and mswi fly ash stabilization, utilizing novel dynamic equipment,” Environmental Pollution, Vol. 157, No. 11, (2009), p. 2933-2938.

    [38] N. L. Ukwattage, P. G. Ranjith and X. Li, “Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation,” Measurement, Vol. 97, (2017), p. 15-22.
    [39] E. E. Chang, S.-Y. Pan, Y.-H. Chen, C.-S. Tan and P.-C. Chiang, “Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed,” Journal of Hazardous Materials, Vol. 227-228, (2012), p.97-106.
    [40] K.-W. Chen, S.-Y. Pan, C.-T. Chen, Y.-H. Chen and P.-C. Chiang, “High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement,” Journal of Cleaner Production, Vol. 124, (2016), p.350-360.
    [41] D. R. MacPherson and L. R. Forbrich, “Determination of uncombined lime in portland cement: The ethylene glycol method,” Industrial & Engineering Chemistry Analytical Edition, Vol. 9, No. 10, (1937), p. 451-453.
    [42] 龍躍、雷雲波、張玉柱、王少甯、韓志傑與師學鋒,EDTA絡合滴定法測定鋼渣中游離氧化鈣,冶金分析,第30卷第7期,(2010),p. 65-68。
    [43] 王博、劉家祥、羅珣、朱桂林、盧忠飛與楊景玲,乙二醇-TG法測定鋼渣中的游離氧化鈣,北京化工大學學報(自然科學版),第38卷第2期,(2011),p. 17-21.
    [44] 行政院環境保護署,NIEA R203.02C,事業廢棄物水分測定方法-間接測定法,(民98)。
    [45] 中華民國國家標準, CNS 1078,水硬性水泥化學分析法,(民100)。
    [46] 行政院環境保護署,NIEA R201.15C,事業廢棄物毒性特性溶出程序,(民105)。
    [47] 行政院環境保護署,NIEA W31 1.53C,水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法,(民102)。
    [48] 行政院環境保護署,NIEA-PA105,環境檢驗品質管制指引通則,(民93)。
    [49] 衛生福利部食品藥物管理署,食品化學檢驗方法之確效規範,(民102)。.
    [50] 行政院環境保護署,有害事業廢棄物認定標準,(民106)。
    [51] 中華民國國家標準, CNS 15286,水硬性混合水泥,(民103)。
    [52] 中華民國國家標準, CNS 1258,卜特蘭水泥熱壓膨脹試驗法,(民104)。
    [53] 趙成剛、白冰與王運霞,土力學原理,清華大學出版社與北京交通大學聯合出版,(2004)。
    [54] 謝洪勇與劉志軍,粉體力學與工程,化學工業出版社,(2007)。
    [55] S. A. Mikhail and A. M. Turcotte, “Thermal behaviour of basic oxygen furnace waste slag,” Thermochimica Acta, Vol. 263, (1995), p. 87-94.
    [56] L. De Windt, P. Chaurand and J. Rose, “Kinetics of steel slag leaching: Batch tests and modeling,” Waste Management, Vol. 31, No. 2, (2011), p. 225-235.
    [57] 唐海燕、孫紹恒、劉輝、王爽、孟文佳與李京社,煉鋼爐渣的浸出和碳酸化研究,中國科技論文,第8卷第12期,(2013), p.1243-1246。
    [58] C. J. Geankoplis, “Transport processes and unit operations,” 3rd Ed, Prentice Hall Professional International, Inc, New Jersey, USA, (1993), p. 701-707.
    [59] B. S. Boyanov, “Differential thermal study of the interactions between sulphates, oxides and ferrites,” Thermochimica Acta, Vol. 302, No. 1 (1997), p. 109-115.
    [60] J. Chen and L. Xiang, “Controllable synthesis of calcium carbonate polymorphs at different temperatures,” Powder Technology, Vol. 189, No. 1, (2009), p. 64-69.
    [61] S. P. Gopi and V. K. Subramanian, “Polymorphism in CaCO3 — effect of temperature under the influence of edta (di sodium salt),” Desalination, Vol. 297, (2012), p. 38-47.
    [62] S. Gopi, V. K. Subramanian and K. Palanisamy, “Aragonite–calcite–vaterite: A temperature influenced sequential polymorphic transformation of CaCO3 in the presence of dtpa,” Materials Research Bulletin, Vol. 48, No. 5, (2013), p. 1906-1912.

    [63] van Zomeren, S. R. van der Laan, H. B. Kobesen, W. J. Huijgen and R. N. Comans, “Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure,” Waste Manag, Vol. 31, No. 11, (2011), p. 2236-2244.
    [64] S. Brand and J. R. Roesler, “Steel furnace slag aggregate expansion and hardened concrete properties,” Cement and Concrete Composites, Vol 60 (2015), p. 1-9.
    [65] Y.-C. Ding, T.-W. Cheng, P.-C. Liu and W.-H. Lee, “Study on the treatment of bof slag to replace fine aggregate in concrete,” Construction and Building Materials , Vol. 146 (2017), p. 644-651.
    [66] T.-H. Lu, Y.-L. Chen, P.-H. Shih and J.-E. Chang, “Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion,” Construction and Building Materials, Vol. 167, (2018), p.768-774.

    無法下載圖示 全文公開日期 2023/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE