簡易檢索 / 詳目顯示

研究生: 林志名
Jhih-ming Lin
論文名稱: 以磁控濺鍍法製備氧化鈰及摻雜釓與銀薄膜之電阻式氧氣感測器與性能比較
The Study of Sputter-Deposited CeO2,GDC and Ag-CeO2 Thin Films for Resistive Oxygen Sensors
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 周振嘉
Chen-Chia Chou
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 106
中文關鍵詞: 電阻式氧氣感測器,氧化鈰,薄膜,濺鍍
外文關鍵詞: Resistive oxygen sensor, Cerium oxide, Sputter, Thin film
相關次數: 點閱:442下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用磁控式濺鍍沉積氧化鈰(CeO2)及摻雜釓與銀[(Gd2O3)x-(CeO2)1-x、Ag- CeO2]之氧化鈰固態薄膜電解質在氧化鋁基材上,後藉由熱處理後再濺鍍白金電極製備成電阻式氧氣感測器。本論文改變氧化鈰薄膜的微結構,並於改變溫度環境中進行電性分析與獲得活化能,以及測試與比較其對氧氣感測之靈敏度。本研究最後做出在高溫與低溫操作溫度下,應答時間快,靈敏性佳的氧氣感測器。
初濺鍍的氧化鈰薄膜能連續且緻密的沉積在氧化鋁基材上,且經XRD可確認其結構已形成結晶相,經過750℃、1000℃、1250℃的熱處理溫度後能穩定薄膜的結構與控制氧化鈰粒徑大小;相同結果也適用於GDC薄膜上。利用鑲嵌靶材濺鍍方式可濺鍍出重量含量為所需之複合銀-氧化鈰薄膜,利用TEM與Auger電子分析銀顆粒之分散性,證明銀確實可均勻分散在氧化鈰薄膜內,於750℃熱處理一小時與五小時後,以EDS分析在CeO2中的銀含量為3.7%與2.9%,而未熱處理的銀含量為5.9%。
本研究於穩定的氧濃度下進行氧化鈰氧氣感測器電阻值在改變氧濃度後對應之靜態量測關係,進一步以瞬間改變氧濃度的動態測試量測感測器電阻改變時的應答時間。本研究發現純氧化鈰薄膜感測器應答時間與熱處理溫度有關,熱處理溫度越高,應答時間越慢,對應氧化鈰微結構為晶粒越大,晶界越少,故傳導路徑變少。
以750℃、1000℃、1250℃熱處理之氧化鈰於750℃量測溫度下,氧分壓由0 Torr改變至152 Torr的應答時間分別為350毫秒、1.5秒、3秒;而摻雜釓之氧化鈰薄膜與摻雜銀之氧化鈰薄膜在低溫450℃下量測所得應答時間為350毫秒與500毫秒。
感測器靈敏性方面,純氧化鈰在高溫下靈敏度比低溫高,但相差不大;GDC感測器在低溫下反應靈敏性較高,越高溫靈敏性越差;銀-氧化鈰感測器也是在低溫下靈敏性較佳,但在高溫因為銀析出問題會影響整體穩定度,未摻雜的純氧化鈰薄膜靈敏性比摻雜過後的薄膜靈敏性好。
本研究分析薄膜之導電性獲得活化能部份,純氧化鈰的活化能在高低溫因傳導機制改變會有兩區段的活化能,而經過熱處理後,活化能會隨著熱處理溫度越高而升高。在未熱處理、750℃、1000℃和1250℃溫度五小時熱處理下,活化能分別為1.23 ev、1.55 ev、1.69 ev與、1.81ev,攙雜釓和銀的氧化鈰只有一區段的活化能,分別為1.1 ev與0.73 ev。


In this thesis, we deposit CeO2,(Gd2O3)x-(CeO2)1-x and Ag- CeO2 thin films on Al2O3 substrate by using magnetron sputtering process, anneal the films, then deposit Pt as electrode to fabricate resistive-type oxygen sensor, analyze its electronal properties, activation energy, and sensors sensitivity of CeO2 thin film, and correlate to their microstruture. Finally, we measure the oxygen sensor’s response time at high temperature(750℃) and low temperature(450℃) and fabricate the resistive oxygen sensors which have good sensitivity and fast response time.
The CeO2 thin film deposited on Al2O3 substrate were continuous and dense. Their structure and crystallinity were verified by XRD. The structure and particle sizes of CeO2 films were stablilized by annealing at 750℃,1000℃, and 1250℃ for 5 hours. This approach was also applicable to GDC thin films. Ag-CeO2 composite thin films were deposited by sputtering Ag-CeO2 inlaid targets. Ag particles were dispersed in CeO2 , verified by TEM and Auger. After annealing, the Ag-CeO2 films at 600℃ for 1 hour and 5 hours. Different Ag weight fractions of 5.9%, 3.7% and 2.9% were obtained by EDX analysis.
In this study, we measure the sensor’s resistance by changing the oxygen concentration in steady condition, and do the dynamic measurement by changing the oxygen concentration rapidly and recording its response time in osciscope and keithley 2410. We discover that the CeO2 thin film oxygen sensor’s response time is related to it’s heat treatment. The higher heat treatment, temperature the slower response time. With high temperature treatment, CeO2 grain become bigger, the grain boundary become less, so transmitting path become less.
In high temperature, GDC sensor has the shortesrresponse time. In low temperature, Ag-CeO2 and GDC sensors have shortresponse time. The CeO2 Oxygen sensors annealed at 750℃, 1000℃ and 1250℃ have response times of 350 ms, 1.5s and 3s tested in 750℃ by changing oxygen partial pressure from 0 Torr to 152 Torr, GDC and Ag-CeO2 oxygen sensors (with 750℃ heat treatment) have response times of 350 ms and 500 ms, tested at 450℃.
CeO2 thin films have good sensitivity then GDC and Ag-CeO2 thin films. GDC sensor has better sensitivity in low test temperature than high test temperature. Ag- CeO2 sensors also behave the same, but become unstable in high test temperature because of Ag diffusion and separation.
Finally, we calculated the activation energies of CeO2 thin films for different annealing temperature, The higher annealing temperature, the higher activation energy. The activation energy of CeO2 sensor with no heat treatment is 1.23 ev, and the activation energies of CeO2 sensor with 750℃, 1000℃ and 1250℃ heat treatment are 1.55 ev, 1.69 ev and 1.81ev. The activation energy of GDC and Ag-CeO2 thin films are 1.1 ev and 0.73 ev which are lower than those of CeO2 thin film.

第一章 前言..................................................................................................... 1 第二章 文獻回顧 2-1 氧氣感測器種類...................................................................................... 3 2-1-1電阻式氧氣感測器.......................................................................... 3 2-1-2 固態電解質之電阻式氧氣感測器.................................................. 5 2-1-3電位式氧濃差電池型...................................................................... 6 2-1-4極限電流型..................................................................................... 7 2-2 電阻式氧氣感測器傳導原理.................................................................. 9 2-3 二氧化鈰電解質.................................................................................... 16 2-3-1螢石結構(Fluorite structure) .......................................................... 17 2-3-2氧化鈰之晶格與相圖.................................................................... 18 2-3-3稀土元素摻雜入氧化鈰電解質之研究.......................................... 18 2-3-4貴金屬摻雜入氧化鈰電解質之研究.............................................. 21 2-4氧化鈰電解質之結構性質之相關研究.................................................... 23 第三章 實驗方法............................................................................................ 25 3-1實驗藥品與材料規格............................................................................. 25 3-2實驗儀器與裝置設備............................................................................. 26 3-3實驗流程與步驟..................................................................................... 27 3-3-1實驗步驟流程圖.......................................................................... 27 3-3-2濺鍍靶材製備.............................................................................. 27 3-3-3 基材之前處理............................................................................. 30 3-3-4濺鍍薄膜電解質.......................................................................... 31 3-3-5電解質熱處理.............................................................................. 32 3-3-6濺鍍薄膜電極.............................................................................. 32 3-4感測器量測............................................................................................ 33 3-4-1靜態量測方法(感測器電阻對氧濃度) ......................................... 35 3-4-2動態量測方法(感測器應答速率) ................................................. 35 3-5實驗儀器分析........................................................................................ 37 3-5-1 場發射掃描式電子顯微鏡( FE-SEM )分析.................................. 37 3-5-2 X-ray繞射儀(XRD)分析.............................................................. 37 3-5-3穿透式電子顯微鏡(TEM)分析..................................................... 38 3-5-4表面輪廓儀(α-step)分析............................................................... 39 3-5-5歐傑電子能譜儀(AES)分析.......................................................... 39 3-5-6電子微探儀(EPMA)分析.............................................................. 40 3-5-7呈相橢圓儀(Imaging Ellipsometer)分析........................................ 40 第四章 結果與討論........................................................................................... 41 4-1純氧化鈰薄膜電解質............................................................................... 41 4-1-1 X-ray繞射分析............................................................................. 41 4-1-2掃描式電子顯微鏡(SEM)微觀分析............................................... 44 4-1-3呈像橢圓儀(Imaging Ellipsometer)分析......................................... 49 4-1-4純氧化鈰溫度對導電性與活化能.................................................. 50 4-1-5純氧化鈰氧氣感測器靜態量測(氧分壓 V.S 電阻) ....................... 52 4-1-6純氧化鈰氧濃度對電阻之關係...................................................... 52 4-1-7純氧化鈰薄膜靈敏性..................................................................... 55 4-1-8氧化鈰感測器動態量測(電阻 V.S 時間) ...................................... 57 4-1-9厚度與導電性和活化能之關係.................................................... 58 4-1-10厚度與應答時間之關係............................................................... 60 4-1-11熱處理溫度與導電性和活化能之關係......................................... 61 4-1-12熱處理溫度與應答時間之關係................................................... 64 4-1-13量測溫度和氣體流量對應答時間之關係..................................... 65 4-1-14氧化鈰之各活化能比較............................................................... 67 4-2氧化鈰掺釓(Gd2O3-doped CeO2)薄膜電解質............................................ 69 4-2-1 X-ray繞射分析.............................................................................. 68 4-2-2掃描式電子顯微鏡(SEM)微觀分析................................................ 70 4-2-3 GDC之EDS成分分析.................................................................. 71 4-2-4 GDC溫度對導電性與活化能........................................................ 71 4-2-5 GDC靜態量測(氧分壓 V.S 電阻) ................................................ 73 4-2-6 GDC氧濃度對電阻之關係............................................................ 73 4-2-7 GDC薄膜靈敏性........................................................................... 74 4-2-8 GDC感測器動態量測(電阻 V.S 時間) ........................................ 75 4-3氧化鈰掺銀(Ag-CeO2)薄膜電解質………………………………………… 78 4-3-1 X-ray繞射分析.............................................................................. 78 4-3-2掃描式電子顯微鏡(SEM)微觀分析................................................ 79 4-3-3穿透式電子顯微鏡(TEM)微觀分析................................................ 88 4-3-4 Auger電子能譜儀分析.................................................................. 93 4-3-5銀-氧化鈰溫度對導電性與活化能................................................. 95 4-3-6銀-氧化鈰氧濃度對電阻之關係..................................................... 97 4-3-7銀-氧化鈰薄膜靈敏性................................................................... 97 4-3-8銀-氧化鈰應答時間....................................................................... 98 4-4不同薄膜電解質之電阻式氧氣感測器比較............................................. 99 第五章 結論.................................................................................................... 105 圖目錄 圖2-1 管狀氧化錫氣體感測器.................................................................................. 5 圖2-2 平板型半導體感測器...................................................................................... 5 圖2-3 電位式固體電解質氧氣感測器(concentration cell) ....................................... 7 圖2-4 電位式氧化鋯氧氣感測器示意圖................................................................... 7 圖2-5 電流式固體電解質氧氣感測器(極限電流型) ............................................... 8 圖2-6 電流式氧氣感測器電流輸出與氧氣濃度的關係........................................... 9 圖2-7 電阻式氧氣感測器導電度對應氧分壓圖..................................................... 13 圖2-8 電阻式氧氣感測器導電度對應氧分壓各斜率比較圖................................. 13 圖2-9 氧分壓與導電率關係 (a)MgO(b)Al2O3[21](c)Pr0.05Ce0.95O2-x(d)Ce0.8Gd0.2O1.9 andGd0.7Ca0.3CoO3-d........... 16 圖2-10 螢石結構圖................................................................................................... 17 圖2-11 氧化鈰摻雜三價陽離子形成氧空缺示意圖............................................... 17 圖2-12 氧化鈰相圖................................................................................................... 18 圖2-13 氧化鈰離子晶格常數與攙雜半徑之關係圖............................................... 19 圖2-14 釓摻雜比例與導電性關係圖....................................................................... 20 圖2-15 不同晶粒尺寸(a)GDC薄膜(b) CeO2薄膜之溫度與導電率 與活化能關係圖......................................................................................................... 20 圖2-16 GDC在不同溫度下導電性與氧分壓關係圖.............................................. 21 圖2-17 Gd0.9Sr0.1CoO3-Ag之SEM分析圖 (A)二次電子影像(B)背向散射電子影像.................................................................. 22 圖2-18 (A)Gd0.9Sr0.1CoO3(B)Gd0.9Sr0.1CoO3-Ag之TEM影像與繞射圖............... 23 圖2-19 Gd0.9Sr0.1CoO3和Gd0.9Sr0.1CoO3-Ag感測(a)CO2(b) O2之電阻 與應答時間關係圖..................................................................................................... 23 圖3-1 製作指叉電極的shadow mask...................................................................... 25 圖3-2 實驗流程圖..................................................................................................... 27 圖3-3 製備靶材過程圖............................................................................................. 28 圖3-4 靶材燒結曲線................................................................................................. 29 圖3-5 以粉末燒結法製作的(a)CeO 2 target(b)CeO2-20%Gd2O3 target靶材 的外觀......................................................................................................................... 29 圖3-6 製作銀-氧化鈰鑲嵌靶步驟........................................................................... 29 圖3-7 銀塊材黏附在氧化鈰靶材面積位置示意圖................................................. 30 圖3-8 濺鍍系統示意圖............................................................................................. 31 圖3-9 濺鍍系統實際圖............................................................................................. 32 圖3-10 白金指插電極圖形....................................................................................... 33 圖3-11 大型石英管爐量測系統圖........................................................................... 34 圖3-12 小型石英管爐量測系統圖........................................................................... 34 圖3-13 小型石英管爐動態量測系統圖................................................................... 36 圖3-14(a) 氮氣進入腔體,空氣排到大氣之氣體流向示意圖.. ............................ 36 圖3-14(b) 空氣進入腔體,氮氣排到大氣之氣體流向示意圖............................... 37 圖4-1 氧化鈰之JCPDS............................................................................................. 41 圖4-2 濺鍍法製作之CeO2薄膜剛鍍出與750 °C-5hr熱處理後的XRD 繞射分析..................................................................................................................... 42 圖4-3 不同熱處理溫度之氧化鈰XRD繞射分析. ................................................. 43 圖4-4 不同熱處理溫度之氧化鈰XRD繞射分析3D圖........................................ 43 圖4-5 在氧化鋁基材上之氧化鈰薄膜(a)初濺鍍後及(b) 750℃ 5小時 (c) 1000℃ 5小時及(d)1250℃ 5小時熱處理表面型態........................................... 45 圖4-6 在氧化矽基材上之氧化鈰薄膜(a)初濺鍍後及(b) 750℃ 5小時 (c) 1000℃ 5小時及(d)1250℃ 5小時熱處理表面型態. .......................................... 46 圖4-7 濺鍍在基材上之氧化鈰薄膜截面圖(a)沉積在氧化矽之五萬倍影像與 (b)一萬倍影像(c)沉積在氧化鋁五萬倍影像及(d)一萬倍影像................................ 47 圖4-8 濺鍍時間與厚度關係(a)濺鍍12小時(b)濺鍍8小時(c)濺鍍6小時......... 48 圖4-9 濺鍍速率曲線................................................................................................. 48 圖4-10 氧化鈰感測器(1μm,750℃熱處理)在不同溫度倒數下所對應之 電阻值曲線................................................................................................................. 51 圖4-11 氧化鈰感測器(1μm,750℃熱處理)在不同溫度倒數下對應之 導電性曲線圖............................................................................................................. 51 圖4-12 氧化鈰(0.5μm,750℃熱處理5小時)氧分壓與電阻之關係曲線............... 52 圖4-13 氧化鈰(1μm,750℃ 5小時熱處理)氧濃度對電阻之關係.. ....................... 53 圖4-14 氧化鈰(1μm,1000℃ 5小時熱處理)氧濃度對電阻之關係........................ 54 圖4-15 氧化鈰(1μm,1250℃ 5小時熱處理)氧濃度對電阻之關係........................ 54 圖4-16 氧化鈰感測器(1μm,750℃ 5小時熱處理)在不同溫度下之靈敏性.......... 55 圖4-17 氧化鈰感測器(1μm,1000℃ 5小時熱處理)在不同溫度下之靈敏性. ...... 56 圖4-18 氧化鈰感測器(1μm,1250℃ 5小時熱處理)在不同溫度下之靈敏性........ 56 圖4-19(a) 750℃下氧化鈰(1μm,750℃熱處理)感測器應答時間(Up)曲線............. 57 圖4-19(b) 750℃下氧化鈰(1μm,750℃熱處理)感測器應答時間(Down)曲線........ 58 圖4-20 氧化鈰感測器(0.5μm,750℃熱處理)在不同溫度倒數下所對應 電阻值曲線................................................................................................................. 59 圖4-21 氧化鈰感測器(0.5μm,750℃熱處理)在不同溫度倒數下對應 導電性曲線圖.............................................................................................................. 60 圖4-22 750℃下氧化鈰(0.5μm,750℃熱處理)感測器應答時間(Up)曲線............... 61 圖4-23 氧化鈰感測器(1μm,1000℃熱處理)在不同溫度倒數下所對應 電阻值曲線................................................................................................................ 62 圖4-24 氧化鈰感測器(1μm,1000℃熱處理)在不同溫度倒數下對應 導電性曲線圖............................................................................................................. 62 圖4-25 氧化鈰感測器(1μm,1250℃熱處理)在不同溫度倒數下所對應 電阻值曲線................................................................................................................. 63 圖4-26 氧化鈰感測器(1μm,1250℃熱處理)在不同溫度倒數下對應 導電性曲線圖……..................................................................................................... 63 圖4-27(a) 750℃下氧化鈰(1μm,1250℃熱處理)感測器應答時間(Up)曲線........... 64 圖4-27(b) 750℃下氧化鈰(1μm,1000℃熱處理)感測器應答時間(Up)曲線.......... .65 圖4-28 氧化鈰薄膜感測器不同溫度對應之應答時間 (a)750℃(b)700℃(c)650℃.......................................................................................... 66 圖4-29 氧化鈰薄膜(1μm,750℃熱處理)感測器不同流量對應之應答時間 (a)300 sccm(b)100 sccm.............................................................................................. 66 圖4-30 氧化鈰感測器(1μm,不同熱處理)在不同溫度倒數下對應之 導電性曲線圖.............................................................................................................. 67 圖4-31 GDC之JCPDS............................................................................................. .69 圖4-32 濺鍍法製作之GDC薄膜剛鍍出與750 °C-5hr熱處理後的XRD 繞射分析..................................................................................................................... 69 圖4-33 在氧化鋁基材上之GDC薄膜(a)初濺鍍之表面型態(b)初濺鍍之 截面型態(c)750℃ 5小時熱處理表面型態及(d)750℃ 5小時熱處理截面型態.... 70 圖4-34 在氧化矽基材上的GDC薄膜EDS成分分析圖...................................... .71 圖4-35 GDC感測器在不同溫度倒數下所對應之電阻值曲線.............................. 72 圖4-36 GDC感測器(1μm,750℃熱處理)在不同溫度倒數下對應之 導電性曲線圖…......................................................................................................... 72 圖4-37 GDC(1μm, 750℃熱處理)氧分壓與電阻之關係曲線.................................. 73 圖4-38 氧濃度對GDC電阻之關係圖..................................................................... 74 圖4-39 GDC感測器在不同溫度下之靈敏性........................................................... 75 圖4-40 750℃下GDC(1μm,750℃熱處理)感測器應答時間(Down)曲線............... 76 圖4-41 450℃下GDC(1μm,750℃熱處理)感測器應答時間(Down)曲線............... 77 圖4-42 濺鍍法製作之Ag-CeO2薄膜剛鍍出與600°C-1hrs和600°C-5hrs 熱處理後的XRD繞射分析....................................................................................... 78 圖4-43 銀之JCPDS.................................................................................................. 79 圖4-44 初濺鍍在基材上之銀-氧化鈰薄膜表面圖(a)沉積在氧化矽五萬倍 (b)沉積在氧化矽一萬倍(c)沉積在氧化鋁五萬倍(d)沉積在氧化鋁一萬................ 80 圖4-45 初濺鍍在氧化矽上之銀-氧化鈰薄膜(高銀比例)表面型貌圖(a)五萬倍 (b)一萬倍(c)五千倍(d)一千倍................................................................................... 82 圖4-46 濺鍍在氧化矽上之銀-氧化鈰薄膜(高銀比例) 經500℃ 1小時熱處理 表面型貌圖(a)五萬倍(b)一萬倍(c)五千倍(d)一千倍............................................... 83 圖4-47 濺鍍在氧化矽上之銀-氧化鈰薄膜(高銀比例) 700℃ 5小時熱處理 表面型貌圖(a)五萬倍(b)一萬倍(c)五千倍(d)一千倍............................................... 84 圖4-48 初濺鍍在氧化矽上之氧化鈰/銀-氧化鈰薄膜(低銀比例)表面型貌圖 (a)五萬倍(b)一萬倍(c)五千倍(d)五百倍................................................................... 85 圖4-49 濺鍍在氧化矽上之氧化鈰/銀-氧化鈰薄膜(低銀比例) 750℃ 5小時 熱處理表面型貌圖(a)五萬倍(b)一萬倍(c)五千倍(d)五百倍................................... 85 圖4-50 濺鍍在氧化鋁上之氧化鈰/銀-氧化鈰薄膜(低銀比例) 750℃ 5小時 熱處理表面型貌圖(a)五萬倍(b)一萬倍(c)五千倍(d)五百倍................................... 86 圖4-51 濺鍍在氧化矽上之氧化鈰/銀-氧化鈰薄膜(低銀比例)截面圖(a)十萬倍 (b)五萬倍及750℃5小時熱處理(c)十萬倍(d)五萬倍.............................................. 86 圖4-52 銀-氧化鈰薄膜TEM十萬倍表面圖(a)銀含量25.1%~24% (b)銀含量4.49%~6.22%............................................................................................. 89 圖4-53 銀-氧化鈰薄膜TEM三十萬倍表面圖(a)銀含量25.1%~24% (b)銀含量4.49%~6.22%............................................................................................. 90 圖4-54 銀-氧化鈰薄膜繞射晶格點(a)氧化鈰晶格繞射點(b)銀晶格繞射點……. 92 圖4-55 銀-氧化鈰薄膜Auger電子能譜儀分析圖(a)未熱處理(b)600℃ 1小時 熱處理(c)750℃ 1小時熱處理.................................................................................. 93 圖4-56 銀-氧化鈰感測器在不同溫度倒數下所對應之電阻值曲線 (a) 750℃持溫5小時熱處理銀-氧化鈰薄膜(b)初濺鍍銀-氧化鈰薄膜(c) 750℃持溫1小時熱處理...........................................................................................................95 圖4-57 銀-氧化鈰感測器在不同溫度倒數下對應之導電性曲線圖.......................96 圖4-58 氧濃度對電阻之關係(a) 750℃持溫5小時熱處理銀-氧化鈰薄膜 (b)初濺鍍銀-氧化鈰薄膜........................................................................................... 97 圖4-59 感測器在不同溫度下之靈敏度(a) 750℃持溫5小時熱處理 銀-氧化鈰薄膜(b) 初濺鍍銀-氧化鈰薄膜............................................................... 98 圖4-60 450℃下銀-氧化鈰(1μm,750℃熱處理)感測器應答時間(Down)曲線… 99 圖4-61 各電解質之活化能曲線............................................................................. 102 圖4-62 各電解質感測器在500℃之靈敏度比較.................................................. 102 表目錄 表2-1 各類型氧氣感測器應用在汽車工業 3 表2-2 半導體型感測器之應用 4 表2-3 各類型半導體表 4 表2-4 電阻式感測器各溫度對應之n值表 13 表2-5 關於氧化鈰應用於電阻式氧氣感測之研究 24 表3-1 實驗的材料與規格表 25 表3-2 實驗裝置表 26 表3-3 分析儀器裝置 26 表4-1 橢圓偏光儀所量測氧化鈰膜之折射率(a)未熱處理(b)750℃ 5小時 熱處理(c)1250℃ 5小時熱處理 49 表4-2 不同熱處理溫度之純氧化鈰感測器的活化能比較 68 表4-3 Ag-CeO2共濺鍍條件 79 表4-4 共濺鍍Ag-CeO2薄膜的EPMA成分分析表 81 表4-5 鑲嵌靶濺鍍Ag-CeO2薄膜的EDS成分分析表 83 表4-6 鑲嵌靶濺鍍Ag-CeO2薄膜的EDS成分分析比較表 87 表4-7 立方晶體結構各圓環之半徑比例 91 表4-8 繞射圖計算晶格常數表 91 表4-9 各不同條件感測器在不同溫度所對應電阻值表 101 表4-10 各電解質薄膜感測器的活化能比較 101 表4-11 不同條件之電解質感測器在高溫下之應答時間比較表 103 表4-12 不同條件之電解質感測器在低溫下之應答時間比較表較 103 表4-13 測試氣體流量150 sccm 腔體內外溫度補償表 103 表4-14 測試氣體流量300 sccm 腔體內外溫度補償表 104

1. S. V. Manorama, N. Izu, W. Shin, I. Matsubara, N. Murayama ,2003,“On the platinum sensitization of nanosized cerium dioxide oxygen sensors”, Sens. Actuators B: Chemical, Volume 89, Issue 3,P299-304.
2. M. Fleischer, H. Meixner,1997,“Fast gas sensors based on metal oxides which are stable at high temperatures”, Sens. Actuators B: Chemical, Volume 43, Issues 1-3, P1-10.
3. J. Riegel, H. Neumann, H. M. Wiedenmann , 2002 ,“Exhaust gas sensors for
automotive emission control”, Solid State Ionics, Volumes 152-153 , P 783-800.
4. E. Ivers-Tiffe´e, K. H. Ha¨rdtl, W. Menesklou, J. Riegel, 2001, ”Principles of solid state oxygen sensors for lean combustion gas control”, Electrochimica Acta 47 P807–814.
5. G. Tan, X. Wu, 1998 ,“Electronic conductivity of a ZrO2 thin film as an oxygen sensor“,Thin Solid Films, Volume 330, Issue 2, P59-61.
6. N. Buttá, M. Melli, 1990 ,“Influence of surface parameters and doping on the sensitivity and on the response times of tin oxide resistive sensors”, Sens. Actuators B: Chemical, Volume 2, Issue 2, P151-161.
7. T. Takeuchi,1987, “Oxygen Sensors”, Nagakute-cho,Aichi-gun, Aichi-ken
480-l 1.
8 . U. Schonauer,1991,“Response times of resistive thick-film oxygen sensors”, Sens. Acluators B, 4 P431-436.
9. N. Hiura, Y. Endo, T. Yamaura, T. Hoshiya, M. Niimi, J. Saito, S. Sozawa, N. Ooka, M. Kobiyama, 1998 ,“Electrical properties of neutron-irradiated oxygen potential sensors using stabilized zirconia solid electrolyte”, Journal of Nuclear Materials 258-263.
10. J. V. Spirig, d, R. Ramamoorthya, Sheikh A, J. L. Routbort, D. Singh, Prabir K. Dutta, 2007 “High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference”, Sens.Actuators B 124.
11. W. Feduska, A. 0. ISENBERG, 1983,“High-temperature solid oxide fuel cell –technical status”, Journal of Power Sources, 10 .
12. D. Pribat, G. Velasco, 1988 ,“Microionic gas sensor for pollution and energy control in the consumer market”, Sens. Actuators, 13 I.73 – 194.
13. A. Asada, H. Yamamoto, M. Nakazawa, H. Osanai, 1990 ,“Limiting Current Type of Oxygen Sensor with High Performance”, Sens. Actuators B ,f 312-318.
14. N. Izu, W. Shin, N. Murayama, 2003 ,“Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder”, Sens.Actuators B: Chemical, Volume 93, Issues 1-3, P449-453.
15. H. J. Beie, A. Gnörich, 1991 ,“Oxygen gas sensors based on CeO2 thick and thin films”, Sens.Actuators B: Chemical, Volume 4, Issues 3-4, P393-399.
16. R. J. Panlener, R. N. Blumenthal, J. E. Garnier, 1975,” A thermodynamic study of nonstoichiometric cerium dioxide”, J.Pkys. Ckem sdids, VolM
17. N. Izu, W. Shin, N. Murayama, S. Kanzaki,2002,“Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis”, Sens.Actuators B: Chemical, Volume 87, Issue 1, P95-98.
18. M.A. Panhans, R. N. Blumenthal,1993,”A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide”, Solid State lonics 60 279-298.
19. K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada,
J. Mizusaki, J. Sfeir, J. Van herle, 2004,” Electrical properties and defect structure of niobia-doped ceria”, Solid State Ionics 175 341–344.
20. E. K. Chang, R. N. Blumenthal,1988,” The Nonstoichiometric Defect Structure and Transport Properties of CeO2-x in the Near-stoichiometric Composition Range”, Journal of Solid state chemistry 72,P330-337.
21. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 1975,”Introduction to Ceramics”, 2nd Edition.
22. H. Inaba, H. Tagawa, 1996 ,“Ceria-based solid electrolytes”, Solid State Ionics 83 ,P1- 16.
23. D.J.M.Bevan,J.Kordis,1964,”Mixed oxides of the type MO2(fluorite)—M2O3—I oxygen dissociation pressures and phase relationships in the system CeO2---Ce2O3 at high temperatures”, Journal of Inorganic and Nuclear Chemistry, Volume 26,Issue 9, P1509-1523.
24. N. Izu, T. Itoh, W. Shin, I. Matsubara, N. Murayama,2007,“The effect of hafnia doping on the resistance of ceria for use in resistive oxygen sensors”, Sensors. Actuators ,B 123,P407–412.
25. B. Elyassi, N. Rajabbeigi, A. Khodadadi, S. S. Mohajerzadeh, M. Sahimi, 2004, ”An yttria-doped ceria-based oxygen sensor with solid-state reference”, Sens.Actuators, B 103, P178–183.
26. M. Dudek,2008,“Ceramic oxide electrolytes based on CeO2—Preparation,
properties and possibility of application to electrochemical devices”, Journal of the European Ceramic Society 28, P965–971.
27. T. S. Zhang ,J. Maa, L. H. Luoa, S. H. Chanb, 2006,” Preparation and properties of dense Ce0.9Gd0.1O2−xceramics for use as electrolytes in IT-SOFCs”,Journal of Alloys and Compounds 422,P46–52.
28. H. Yahiro, K. Eguchi, H. Arai,1989,”Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell”,Solid State Ionics, Volume 36, Issues 1-2, P71-75.
29. William. D.Callister, J.R,”Materials science and engineering an introduction”.
30. Z. Tianshu, P. Hing, H. Huang, J. Kilner,2002,” Ionic conductivity in the CeO2–Gd2O3 system(0.05≦Gd/Ce≦0.4) prepared by oxalate coprecipitation”, Solid State Ionics 148, P567– 573.
31. J. L. M. Rupp, L. J. Gauckler,2002,“Microstructure–electrical conductivity relationships in nanocrystalline ceria thin films”,Solid State Ionics, Volume 151, Issues 1-4, P111-121.
32. S. Lubke, H. D. Wiemhofer,1999,”Electronic conductivity of Gd-doped ceria with additional Pr-doping” ,Solid State Ionics 117, P229–243.
33. H.J.Park, G.M. Choi, 2004,”Oxygen permeation in Sr- and Mg-doped LaAlO3 and Gd-doped CeO2 at high temperature”, Solid State Ionics, Volume 175, Issues 1-4, 30, P399-403.
34. K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, 1992 ,“Electrical properties of ceria-based oxides and their application to solid oxide fuel cells”, Solid State lonics 52 , P165-172.
35. U. Nigge, H. D. Wiemho, E. W. J. Romerb, H. J. M. Bouwmeester, T. R. Schulte, 2002,“Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3-d as oxygen permeable membranes for exhaust gas sensors”, Solid State Ionics 146 , P163–174.
36. M. Hartmanovaa, K. Gmucova, M. Jergel, I. Thurzo, F. Kundracik, M. Brunel, 1999,” Structural and electrical properties of double-layer ceria / yttria stabilized zirconia deposited on silicon substrate”, Solid State Ionics 119, P85–90.
37. H. Kaneko, H. Taimatsu, Y. Miyoshi, K. Kawanaka, T. Kusano, 1993,” YSZ/Ag potentiometric sensor for reducing gas detection“, Sens. Actuators
B,13-14 ,P151-154.
38. L. S. Wang, E. S. Thiele , S. A. Barnett, 1992,”Sputter deposition of yttria-stabilized zirconia and silver cermet electrodes for SOFC applications”, Solid State Ionics 52, P261-267.
39. J. Gong, Q. Chen, M. R. Lian, N. C. Liu, R. G. Stevenson, F. Adami, 2006, “Micromachined nanocrystalline silver doped SnO2 H2S sensor”, Sensors .Actuators B: Chemical, Volume 114, Issue 1, P32-39.
40. C. R. Michel, E. López Mena, A. H. Martínez Preciado , Eligio de León, 2007 , “Improvement of the gas sensing behavior in nanostructured Gd0.9Sr0.1CoO3 by addition of silver”, Materials Science and Engineering B 141, P1–7.
41. N. Izu, W. Shin, I. Matsubara, N. Murayama, 2003,“The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film”, Sensors.Actuators B 94, P222–227.
42. N. Izu, W. Shin, I. Matsubara, N. Murayama, 2004,” Kinetic behavior of resistive oxygen sensor using cerium oxide”, Sensors.Actuators B 100, P 411–416.
43. N. Izu, W. Shin, N. Murayama, 2002,” Numerical analysis of response time for resistive oxygen gas sensors”, Sensors.Actuators B: Chemical, Volume 87, Issue 1, P 99-104
43. N. Izu, W. Shin, I. Matsubara, N. Murayama, 2004,” Kinetic behavior of resistive oxygen sensor using cerium oxide”, Sensors.Actuators B: Chemical, Volume 100, Issue 3, P411-416.
44. M. Krishna, A. Hartridge , A. K. Bhattacharya, 1998,”Temperature and ionic size dependence of the properties of ceria based optionic thin films”, Materials Science and Engineering B, Volume 55, Issues 1-2, P14-20.
45. J. L. M. Rupp, L. J. Gauckler, 2006,” Microstructures and electrical conductivity of nanocrystalline ceria-based thin films”, Solid State Ionics, Volume 177, Issues 26-32, P2513-2518.
46. W. Shin, N. Izu,I. Matsubara, N. Murayama, 2004,” Millisecond-order response measurement for fast oxygen gas sensors”, Sens.Actuators B: Chemical, Volume 100, Issue 3, P395-400.
47. A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S.Viticoli, E. Comini, G. Sberveglieri, 2003,” Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing”, Sensors. Actuators B: Chemical, Volume 95, Issues 1-3, P145-150.
48. J. C. Frost,1988,”Junction effect interaction in methanol synthesis catalysts”, Nature 334 577-580.

QR CODE