簡易檢索 / 詳目顯示

研究生: 朱政仲
Cheng-Chung Cgu
論文名稱: 線性彈簧式定扭力連桿機構之研究
Toward the Constant-Torque Linkage-Type Mechanisms Using Linear Springs
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 林柏廷
湯孝威
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 44
中文關鍵詞: 定扭力機構定力機構計算機構最佳化設計
外文關鍵詞: constant-torque mechanism, constant-force mechanism, computing mechanism, optimization design
相關次數: 點閱:367下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以彈簧式的剛性連桿機構設計出能輸出定扭力的機構,該機構不使用撓性桿件及凸輪,僅使用剛性連桿及彈簧即可輸出近似定扭力。研究首先回顧定扭力機構之發展現況,接著提出兩種定扭力機構構想,並利用此構想設計出三個不同的近似定扭力機構。接著分析出各機構輸出桿的扭力公式,再使用Matlab及Adams機構運動模擬軟體分別進行數值計算及模擬驗證,最後,我們進行其中一種最可行機構的最佳化設計。設計結果顯示,該機構在曲柄旋轉60度到110度之間,其輸出的扭力值與理想中的完美定扭力值平均誤差僅有5.67%。


    This study explores the design possibility of a spring-type rigid-link mechanism that produces a constant torque. The mechanism we aim to devise should have rigid links and a spring only without the use of flexible rods and cams. In this thesis, we firstly reviewed the development of the torsional mechanisms. We then put forward two possible mechanism concepts to output constant-torque, and use these two concepts to design three nearly constant-torque mechanisms. Then we analyzed the output torque of each mechanism, and then use Matlab and Adams software to verify the design results. Finally, we chose the most feasible design, performing its geometrical optimization. The design result shows that the average fluctuation of the output torque is only 5.67% during 60 degrees to 110 degrees of the crank motion.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的 1.4 論文架構 第二章 定扭力連桿機構設計:以乘法計算機構為基礎 2.1 乘法計算機構介紹 2.2 以乘法計算機構達成定扭力之概念 2.3 以乘法計算機構為基礎之設計:機構一 2.4 小結 第三章 近似定扭力連桿機構設計:以二連桿機構為基礎 3.1 二連桿機構力矩理論介紹 3.2 以二連桿機構力矩理論達成定扭力之概念 3.3 以二連桿機構力矩理論為基礎之設計:機構二 3.4 以二連桿機構力矩理論為基礎之設計:機構三與機構四 3.5 小結 第四章 扭力分析 4.1 基本假設 4.2 機構一 4.3 機構二 4.4 機構三 4.5 機構三改良─機構四 4.6 小結 第五章 最佳化設計與討論 5.1 機構四之最佳化設計 5.2 討論 5.3 小結 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] Herder, J. L., Rieler, F. L. S. t., 2001, “Perfect Static Balance with Normal Springs,” ASME 2001 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Pittsburgh, Pennsylvania, September 9-12, DETC2001/DAC-21069.
    [2] Whitney, J. P., Hodgins, J. K., 2014, “A Passively Safe and Gravity-Counterbalanced Anthropomorphic Robot Arm,” IEEE International Conference on Robotics & Automation (ICRA), Hong Kong, China, May 31 - June 7.
    [3] Jr., F. A. V., 1952, “The Theory and Design of Long-Deflection Constant-Force Spring Elements,” Transactions of the ASME, 74, pp. 439-450.
    [4] Hou, C.-W., Lan, C.-C., 2013, “Functional Joint Mechanisms with Constant-Torque Outputs,” Mechanism and Machine Theory, 62, pp. 166-181.
    [5] Prakashah, N. H., Zhou, H., 2016, “Synthesis of Constant Torque Compliant Mechanisms,” ASME Journal of Mechanisms and Robotics, 8(6), p. 064503.
    [6] Herder, J. L., 1998, “Design of Spring Force Compensation Systems,” Mechanism and Machine Theory, 33, pp. 151-161.
    [7] Liu, Y., Yu, D.-P., Yao, J., 2016, “Design of an Adjustable Cam Based Constant Force Mechanism,” Mechanism and Machine Theory, 103, pp. 85-97.
    [8] Zhang, M., Laliberté, T., Gosselin, C., 2017, “Design and Static Analysis of Elastic Force and Torque Limiting Devices for Safe Physical Human–Robot Interaction,” ASME Journal of Mechanisms and Robotics, 9(2), p. 021003.
    [9] Svoboda, A., 1965 Computing Mechanisms and Linkages, 1st ed., Dover Publications, Inc., New York, NY.

    QR CODE