簡易檢索 / 詳目顯示

研究生: 毛姵媞
Peiti Mao
論文名稱: Leonardo Torres Quevedo 機械式一元二次方程計算機之復原研究
Reconstruction Research of Leonardo Torres Quevedo's Mechanical Quadratic Equation Calculators
指導教授: 陳羽薰
Yu-Hsun Chen
口試委員: 石伊蓓
Yi-Pei Shih
徐冠倫
Kuan-Lun Hsu
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 225
中文關鍵詞: 機械式計算機Leonardo Torres Quevedo復原研究復原設計機構設計機械史古機械
外文關鍵詞: Mechanical Calculators, Leonardo Torres Quevedo, Reconstruction Research, Reconstruction Design, Mechanism Design, History of Machines, Ancient Machines
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著現代數學的進步,複雜的物理現象和工程問題可以透過提供相應分析方法的數學模型解決。各種可處理複雜方程式的機械式計算器於 19 世紀至 20 世紀相繼問世,儘管現已被電子式計算機取代,但其工作原理和設計方法仍然是構成科技文明進步並推動計算機技術發展的重要基礎。
西班牙發明家 Leonardo Torres Quevedo 於西元1893至1920年間陸續設計的三台機械式計算機,皆用於求解複雜方程式,分別求解多項式相加、一元二次方程式的複根、八次方程式的根。其中一個典型的例子「機械式一元二次方程計算機」為二次方程式計算器,用於求複數根。儘管歷史文獻與Torres的學術論文和計畫報告仍然存在,然而多為概念原理與範例說明,對其機構的研究有限,影響對其概念原理和具體示例的理解,導致構造與零件並不明確。
本研究提出一套系統化的復原方法,針對Torres發明之複雜計算機械式計算機進行史料研究。解析裝置所運算之方程式,了解數值與機構之轉換關係以利復原設計。並針對「機械式一元二次方程計算機」中的六大機構進行分析與分類,區分輸入動力源、計算系統、傳動系統及輸出結果系統等四個動力傳遞子系統,根據文獻之圖片與文字記載進行復原設計,構造明確部分進行直接進行機構尺寸演算;構造不明部分則以兩台參考裝置的相似機構為基礎,進行機構設計合成方法、機械設計方法,以及目標方程與機構之關係演算,進行機構與尺寸合成,以推測出符合當代工藝技術之可行設計。
本研究針對「機械式一元二次方程計算機」中的六大機構提出可行機構,從中篩選出符合目標方程與機構之關係的最合適機構,包含耦合運動曲線、平移變量ρ計算機構、旋轉變量α計算機構、剪刀機構。其次建構3D模型與運動模擬,藉由製造公差分析設置最佳公差參數,以提高計算機精準度。最後製作實體原型機,驗證所提出的可行復原設計與製造之合理性。本研究所提出之復原合成流程,可應用於其它計算機之復原研究。


With the advancement of modern mathematics, complex physical phenomena and engineering problems can be addressed using mathematical models that provide corresponding analytical methods. To solve complex equations, mechanical calculators were designed during the 19th and 20th centuries. Although mechanical calculators have been replaced by electronic computers precently, these operation principles and design methods constitute an important foundation for the advancement of technological civilization and the development of computer technology.
Spanish inventor Leonardo Torres Quevedo designed three mechanical calculators between 1893 and 1920 for solving complex equations, including polynomial addition, complex roots of quadratic equations, and roots of eighth-degree equations. One typical example is the Quadratic Equation Calculator “Máquina para Resolver Ecuaciones de Segundo Grado”, created by Spanish inventor Leonardo Torres Quevedo, which was used to determine complex roots. Though Torres's academic papers and project reports still exist, there’s limited research on mechanism. This scarcity primarily affects the understanding of their conceptual principles and specific examples, leaving the structures and components unclear.
This research provides a systematic reconstruction method. Beginning with research on literature, the equations are analyzed to understand the relationship between numerical values and mechanism transformations. Six major mechanisms in the “Mechanical Quadratic Equation Calculators” are analyzed and classified into four power transmission subsystems, including input power source, calculation system, transmission system, and output result system. For the parts with unclear structures, the mechanical design and dimensional parameters are reconstructed referring to the other two calculators made by the same inventor. The reconstructed calculator meets the requirement that the output motion of the mechanisms represents the solutions of the target mathematical equations, and it also aligns with the technology available at that time.
Feasible mechanisms are proposed for six major mechanisms in the “Mechanical Quadratic Equation Calculators”. The 3D models and motion simulations are created, and the manufacturing tolerance is analyzed to obtain the optimizing parameters for improving calculator precision. Finally, the prototypes testing is made to evaluate the rationality of the proposed reconstruction designs and manufacturing. The desing procedure proposed in this research can be applied to the reconstruction of other calculators.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究動機 3 1.2 研究目的 4 1.3 論文架構 5 第二章 歷史發展與文獻回顧 8 2.1 歷史背景與計算機發展歷程 8 2.1.1 古代 (五世紀以前) 9 2.1.2 中世紀 (五世紀末-十五世紀中葉) 10 2.1.3 近代 (十五世紀末-十八世紀末) 12 2.1.4 現代 (十八世紀末-至今) 21 2.2 萊昂納多·托雷斯·克維多Leonardo Torres Quevedo 41 2.2.1 古籍蒐集彙整與分析 46 2.2.2 當代科技背景之漸開線齒輪 48 2.2.3 近年相關研究 48 2.3 機械式計算機復原案例 49 2.4 小結 52 第三章 復原合成流程與方法 53 3.1 復原設計程序 55 3.2 復原製造方法 60 第四章 參考裝置解析:Torres設計的一系列機械式計算機 63 4.1 參考裝置解析(一):多項式加法計算機 63 4.1.1 機構分析分類 64 4.1.2 計算系統方程演算解析 70 4.2 參考裝置解析(二):八次多項式求解計算機 76 4.2.1 計算操作步驟說明 78 4.2.2 機構分析與分類 80 4.2.3 計算系統方程演算解析 87 4.3 相似機構 93 第五章 復原設計 95 5.1 計算操作步驟說明:實例計算x2+4=0 100 5.2 機構分析與分類 106 5.2.1 機構分析 106 5.2.2 動力傳遞系統分類 113 5.3 計算系統方程演算解析 115 5.3.1 第一個重要方程式:式( 5 5 ) 115 5.3.2 第二個重要方程式:式( 5 6 ) 117 5.4 機構模型設計 119 5.4.1 外框架 119 5.4.2 耦合運動 120 5.4.3 平移變量 ρ 計算機構 122 5.4.4 同步機構 133 5.4.5 旋轉變量 α 計算機構 136 5.4.6 剪刀機構 145 5.5 運動模擬與驗證 150 5.5.1 實例1的計算:x2-2x+4=0 150 5.5.2 實例2的計算:x2-2x+3=0 152 5.6 數值運算與機構位移量之關係 154 第六章 復原製造 155 6.1 製造公差分析 155 6.1.1 製造公差說明 155 6.1.2 桿件製造公差影響評估計算 157 6.1.3 模擬數據分析 159 6.2 機械細部設計 163 6.2.1 外框架 164 6.2.2 耦合運動 166 6.2.3 平移變量 ρ 計算機構 168 6.2.4 同步機構 168 6.2.5 旋轉變量 α 計算機構 170 6.2.6 剪刀機構 172 6.3 實機製作 172 6.4 實機測試 174 6.4.1 平移變量 ρ 計算機構 174 6.4.2 旋轉變量 α 計算機構 176 6.5 小結 177 第七章 結論 178 參考文獻 181 附錄A 歷史背景與計算機發展歷程完整版 197 附錄B Leonardo Torres Quevedo 的發明重點整理 216

[1] T. Freeth, Y. Bitsakis, X. Moussas, J.H. Seiradakis, A.Tselikas, E. Magkou, M. Zafeiropoulou, R. Hadland, D. Bate, A. Ramsey, M. Allen, A. Crawley, P. Hockley, T. Malzbender, D. Gelb, W. Ambrisco and M.G. Edmunds, 2006, “Decoding the Antikythera Mechanism,” Nature, 444 (7119), pp. 587-591.
[2] Derek de Solla Price, 1974, “Gears from the Greeks. The Antikythera Mechanism: A Calendar Computer from ca. 80 B. C.,” Transactions of the American Philosophical Society, 64 (7), pp. 1-70.
[3] Jian-Liang Lin, Hong-Sen Yan, 2015, “Ancient Astronomical Instruments,” In Decoding the Mechanisms of Antikythera Astronomical Device, pp. 21-43, Berlin. Germany: Springer-Verlag.
[4] J.V. Field, M.T. Wright, 1985, “Gears from the Byzantines: a portable sundial with calendrical gearing,” Science, 42 (2), pp. 87-138.
[5] (北宋)蘇頌,1094-1096,新儀象法要 三卷。
(收編於(清朝乾隆五十二年)近四千朝臣文官,1787,欽定四庫全書,子部,天文算法類,北京紫禁城皇宮文淵閣: 四書七閣中之一,中華民國故宮典藏)。
[6] Ibn ar-Razāz al-Jazarī, 1206, Kitāb fī ma 'rifat al-hiyal al-handasiyya. (Translated and annotated by Donald R. Hill, 1974, The Book of Knowledge of Ingenious Mechanical Devices, Dordrecht. Holland: D. Reidel.).
[7] Ahmad Y. al-Hassan , Donald R. Hill, 1992, Islamic Technology: An Illustrated History, 1st ed, pp. 57-59, Cambridge. UK: Cambridge University Press.
[8] (李式朝鮮世宗)金墩,1438,《欽敬閣記》,於世宗實錄,東文選卷之八十二。
[9] (李式朝鮮世宗)金墩,1432,《簡儀臺記》,於世宗實錄,東文選卷之八十二。
[10] (李式朝鮮世宗)金墩,1433,《報漏閣記》,於世宗實錄,東文選卷之八十二。
[11] Moon-Hyon Nam, 2016, “Time in Korea,” In Encyclopaedia of the History of Science, Technology and Medicine in Non-Western Cultures, pp. 4248-4258, Dordrecht. Holland: Springer.
[12] Jean Crasset,1715,日本西教史。近代出版:太政官翻譯,1931,太陽堂出版,東京。
[13] Isao Hayasaka, 1990, “A Cultural History of the Wa-dokei: A Design History of Time-measuring Instruments; No.2,” Bulletin of Japanese Society for the Science of Design, 78, pp.29-36.
[14] 落合偉洲,2013,家康公の時計:四百年を越えた奇跡,平凡社,東京。
[15] John Napier, 1617, Rabdologiæ, Edinburgh. Scotland. UK. (Translated by William Frank Richardson, 1990, Rabdology, Massachusetts. USA: MIT Press)
[16] Hugh Chisholm, 1911, “Gunter, Edmund,” In Vol. 12 of The Encyclopædia Britannica, 11th edition, pp. 729-730, Cambridge. UK: Cambridge University Press.
[17] David Eugene Smith, 1925, Vol. 2 of History Of Mathematics, pp. 205-206, New York. USA: Dover Publications.
[18] W. W. Rouse Ball, 1917, “Review of William Oughtred: a great Seventeenth-century Teacher of Mathematics,” Science Progress (1916-1919), 11 (44), pp. 694-695.
[19] R. Mehmke, Wilhelm Franz Meyer ed., 1904, “IF. NUMERISCHES RECHNEN,” Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen:Arithmetic und Algebra, 1 (2), pp. 938-1079, Leipzig. Germany: B.G. Teubner.
[20] Jean Marguin, 1994, Histoire des instruments et machines à calculer. Trois siècles de mécanique pensante, pp. 1642-1942, Paris. France: Hermann.
[21] Roman Janssen, Oliver Auge ed., 1999, Herrenberger Persönlichkeiten aus acht Jahrhunderten, p. 191, Herrenberg. Germany.
[22] Friedrich Seck, 1978, Wilhelm Schickard 1592-1635: Astronom, Geograph, Orientalist, Erfinder der Rechenmaschine, Tübingen. Germany: Franz Steiner Verlag.
[23] Michael R. Williams, 1997, A History of Computing Technology, 2nd edition, Los Alamitos. California: Wiley-IEEE Computer Society.
[24] Guy Mourlevat, 1988, Les machines arithmétiques de Blaise Pascal, La Française d'Edition et d'Imprimerie, Clermont-Ferrand. France.
[25] Blaise Pascal, 1779, Vol. 4 of Oeuvres de Pascal (5 vols), La Haye. chez Detune.
[26] Florin Stefan Morar, 2014, “Reinventing machines: The transmission history of the Leibniz calculator,” The British Journal for the History of Science (BJHS), 48 (1), pp. 1-24.
[27] Hermann Julius Meyer, 1893-1897, “Leibniz's Calculator,” In Meyers Konversationslexikon, 5th edition, Leipzig. Germany: Bibliographischen Institut.
[28] Susanne Voss Redaktion, 2016, “Geschichte: Leibniz’ Vier-Spezies-Rechenmaschine(n),” In Stadtblick Mitteilungsblatt, p. 18, Altdorf. Nürnberg. Germany: Druckerei Carl Hessel GmbH.
[29] J. Joly, 1932, “Thomas de Colmar,” In La Vie en Alsace : revue mensuelle illustrée, Strasbourg. France: Renaissance alsacienne.
[30] Jean Marguin, 1997, “L’arithmomètre de Thomas n° 1398”, Bulletin de la Sabix, 18.
[31] Charles Xavier Thomas de Colmar, 1820, Thomas de Colmar patents the Arithmometer, France Patent 1420.
[32] Charles Xavier Thomas de Colmar, 1849, Description of the Arithmometer, France Patent 8282.
[33] Charles Xavier Thomas de Colmar, 1851, Calculating Machine, France Patent 13504.
[34] la compagnie d'Assurances Le Soleil, 1929, Assurances Le Soleil 1829-1929, Paris. France.
[35] Christie's Online Auction, 2015, “A THOMAS DE COLMAR ARITHMOMETER PARIS, MID TO LATE 19TH CENTURY,” Arithmometer No. 1846. Accessed August 2.
[36] Maxwell Herman Alexander Newman, 1948, “General principles of the design of all-purpose computing machines,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 195 (1042), pp. 271-274.
[37] Subrata Dasgupta, 2014, It Began with Babbage: The Genesis of Computer Science, Illustrated edition, Oxford. UK: Oxford University Press.
[38] Denis Roegel, 2009, “Prototype Fragments from Babbage’s First Difference Engine,” IEEE Annals of the History of Computing, 31 (2), pp. 70-75.
[39] Science Museum Group. 2023. “Difference Engine No. 1.” 1862-89Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
[40] Doron D. Swade, 2005, “The construction of Charles Babbage's Difference Engine No. 2,” IEEE Annals of the History of Computing, 27 (3)‎, pp. 70-88.
[41] Science Museum Group. 2023. “Difference Engine No.2, designed by Charles Babbage, built by Science Museum.” 1992-556 Pt1Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co526657/difference-engine-no-2-designed-by-charles-babbage-built-by-science-museum-difference-engine
[42] Allan G. Bromley, 1982, “Charles Babbage's Analytical Engine, 1838,” Annals of the History of Computing, 4 (3), pp. 196-217.
[43] Allan G. Bromley, 1998, “Charles Babbage's Analytical Engine, 1838,” IEEE Annals of the History of Computing, 20 (4), pp. 29-45.
[44] Henry Prevost Babbage, 1984, Babbage's Calculating Engines(393 pages), Cambridge. Massachusetts. USA: The MIT Press.
[45] Science Museum Group. 2023. “Babbage's Analytical Engine, 1834-1871. (Trial model).” 1878-3Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co62245/babbages-analytical-engine-1834-1871-trial-model-analytical-engine-mill
[46] Science Museum Group. 2023. “Henry Babbage's Analytical Engine Mill, 1910.” 1896-58Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co62246/henry-babbages-analytical-engine-mill-1910-analytical-engine-mills
[47] Timo Leipälä, 2003, “The life and works of W. T. Odhner, part I,” In 2. Greifswalder Symposium zur Entwicklung der Rechentechnik, Greifswald. Germany.
[48] Timo Leipälä, 2003, “The Life and Works of W. T. Odhner (Part II),” In 3. Greifswalder Symposium zur Entwicklung der Rechentechnik, pp. 55-85, Greifswald. German.
[49] Willgodt Theophil Odhner, 1894, Calculating Apparatus, USA Patent 514725.
[50] The Arithmeum as an Institution of the University of Bonn. 2023. “Odhner 239.” (Online Collection Website). Accessed August 20.
https://www.arithmeum.uni-bonn.de/sammlungen/rechnen-einst/objekt.html?tx_arithinventory[object]=1933
[51] The Arithmeum as an Institution of the University of Bonn. 2023. “Odhner Arithmometer I.” (Online Collection Website). Accessed August 20.
https://www.arithmeum.uni-bonn.de/sammlungen/rechnen-einst/objekt.html?tx_arithinventory%5Bobject%5D=1603
[52] Science Museum Group. 2023. “Model to Demonstrate Combination of Tidal Constituents, 1872.” 1881-12Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co53906/model-to-demonstrate-combination-of-tidal-constituents-1872-demonstration-model
[53] Science Museum Group. 2023. “William Thomson's Tide Predicting Machine, 1872.” 1876-1129Science Museum Group Collection Online. Accessed August 20.
https://collection.sciencemuseumgroup.org.uk/objects/co53901/william-thomsons-tide-predicting-machine-1872-tide-predictor
[54] Sir William Thomson, 1881, “The tide gauge, tidal harmonic analyser, and tide predicter,” In Minutes of the Proceedings of the Institution of Civil Engineers, 65 (1881), pp. 2-25, London. UK: Institution of Civil Engineers (Great Britain).
[55] Science Museum Group. 2023. “Kelvin's harmonic analyser.” 1946-343Science Museum Group Collection Online. Accessed September 4.
https://collection.sciencemuseumgroup.org.uk/objects/co60669/kelvins-harmonic-analyser-harmonic-analyser
[56] James Thomson, 01 January 1876, “On an Integrating Machine Having a New Kinematic Principle,” Proceedings of the Royal Society, pp.262-265, UK: The Royal Society Publishing.
[57] John Wolff's Web Museum. 2023. “The Marchant Calculating Machine Company.” Accessed September 4.
http://www.johnwolff.id.au/calculators/Marchant/Marchant.htm
[58] John Wolff's Web Museum. 2023. “Marchant Figurematic.” Accessed September 4.
http://www.johnwolff.id.au/calculators/Tech/MarchantDRX/Intro.htm
[59] Marchant Calculating Machine Company, 1956, Operating Instructions for the Marchant Figurematic Model ADX, Oakland. California. USA: Booklet.
[60] Curt Herzstark, 2012, “The Inventor of the CURTA Calculator. Curt Herzstark,” Translated by Thomas Wyman, Roseville. California. USA: Oughtred Society.
[61] Curt Herzstark, 1958, Rundbau-Rechenmaschine, Germany Patent DE1037733B.
[62] Brian Coghlan, Brian Randell, 2022, Percy Ludgate (1883-1922): Ireland's First Computer Designer, Ireland. UK: John Gabriel Byrne Computer Science Collection.
[63] D. Riches, 1973, “An Analysis of Ludgate’s Machine Leading to the Design of a Digital Logarithmic Multiplier,” Master thesis, Department of Electrical and Electronic Engineering, Swansea University, Swansea, Wales, U.K.
[64] Percy Edwin Ludgate, 1909, “On a proposed analytical machine,” The Scientific proceedings of the Royal Dublin Society, 12 (9), pp. 77-91, Dublin. Germant: The Royal Dublin Society.
[65] Larry Owens, 1986, “Vannevar Bush and the Differential Analyzer: The Text and Context of an Early Computer,” Technology and Culture, 27 (1), pp. 63-95.
[66] Vannevar Bush, 1931, “The differential analyzer. A new machine for solving differential equations,” Journal of the Franklin Institute, 212 (4), pp. 447-488.
[67] Charles Eames, Ray Eames, 1973, A Computer Perspective, Cambridge. Massachusetts. USA: Harvard University Press.
[68] Francisco González de Posada, Francisco A. González Redondo, 1999, Actas del III Simposio "Leonardo Torres Quevedo: su vida, su tiempo, su obra" : 24 a 28 de abril de 1995, Pozuelo de Alarcón. Madrid. Spain: Amigos de la Cultura Científica.
[69] Francisco González de Posada, Francisco A. González Redondo, 2004, “Leonardo Torres Quevedo (1852-1936). 1ª Parte. Las máquinas algébricas,” La Gaceta de la RSME, 7.3, pp. 787-810.
[70] Francisco González de Posada, Francisco A. González Redondo, 2005, “Leonardo Torres Quevedo (1852-1936). 2ª Parte. Automática. Máquinas analíticas,” La Gaceta de la RSME, 8.1, pp. 267-293.
[71] Félix García Merayo, 2013, “Leonardo Torres Quevedo,” Revista Digital de ACTA.
[72] Francisco A. González Redondo, 2019, “Ingeniería y arte en los diseños de “Leonardo Torres Quevedo”,” Revista de la Asociación Española de Ensayos No Destructivos(AEND), 88, 3rd quarter, Arte y patrimonio, pp. 20-25.
[73] Francisco A. González Redondo, 2019, “Leonardo Torres Quevedo: Ingeniero, matemático, inventor,” Revista de la Asociación Española de Ensayos No Destructivos(AEND), 88, 3rd quarter, Artículos técnicos, pp. 28-38.
[74] H. Rubio, J. C. Garcia-Prada, C. Castejon, J. Meneses, 2023, “Leonardo Torres Quevedo (1952–1936),” Distinguished Figures in Mechanical Engineering in Spain and Ibero-America, pp.317-357, Cham. Switzerland: Springer International Publishing.
[75] Google Arts & Culture. “Museo Torres Quevedo.” (Online Museum). Accessed September 4.
https://artsandculture.google.com/partner/museo-torres-quevedo?hl=es
[76] Francisco González de Posada, Francisco A. González Redondo, 1999, “La Bibliografía Científica de Torres Quevedo”, Actas del III Simposio "Leonardo Torres Quevedo: su vida, su tiempo, su obra" : 24 a 28 de abril de 1995(296 pages), ch. 5.5, pp. 289-296, Pozuelo de Alarcón. Madrid. Spain: Amigos de la Cultura Científica.
[77] “Bibliothèque nationale de France.” (Online Database). Accessed September 4.
https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=mobile
[78] “Real Academia de Ciencias Exactas, Físicas y Naturales de España.” (Online Database). Accessed September 4.
https://rac.es/
[79] “Google Book.” (Online Database). Accessed September 4.
https://books.google.com.tw/
[80] “Google Arts & Culture.” (Online Database). Accessed September 4.
https://artsandculture.google.com/
[81] Leonardo Torres Quevedo, 1895, Memoria sobre las máquinas algébricas, Bilbao. Spain: Imprenta de la Casa de la Misericordia.
[82] Leonardo Torres Quevedo, 1893, Memoria sobre las máquinas algébricas, Informe a la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid.
[83] Eduardo Saavedra Moragas, 1895, “Informe,” Anuario de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid, pp. 202-237.
[84] Eduardo Saavedra Moragas, 1895, “Informe interesante mencionado en el anterior resumen de actas sobre una máquina para resolver ecuaciones,” Revista de Obras Públicas, 43 (1), no. 22, pp. 169-170.
[85] Eduardo Saavedra Moragas, 1895, “Informe interesante mencionado en el anterior resumen de actas sobre una máquina para resolver ecuaciones,” Revista de Obras Públicas, 43 (1), no. 23, pp. 177-178.
[86] Eduardo Saavedra Moragas, 1895, “Informe interesante mencionado en el anterior resumen de actas sobre una máquina para resolver ecuaciones,” Revista de Obras Públicas, 43 (1), no. 24, pp. 185-186.
[87] Eduardo Saavedra Moragas, 1895, “Informe interesante mencionado en el anterior resumen de actas sobre una máquina para resolver ecuaciones,” Revista de Obras Públicas, 43 (1), no. 25, pp. 193-194.
[88] Eduardo Saavedra Moragas, 1895, “Informe interesante mencionado en el anterior resumen de actas sobre una máquina para resolver ecuaciones,” Revista de Obras Públicas, 43 (1), no. 26, pp. 201-202.
[89] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas,” Revista de Obras Públicas, 43 (1), no. 26, pp. 202-205.
[90] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 27, pp. 209-215.
[91] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 28, pp. 217-222.
[92] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 29, pp. 225-227.
[93] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 30, pp. 233-240.
[94] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 31, pp. 241-246.
[95] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 32, pp. 249-259.
[96] Leonardo Torres Quevedo, 1895, “Memoria sobre las máquinas algebraicas” Revista de Obras Públicas, 43 (1), no. 33, pp. 257-262.
[97] Leonardo Torres Quevedo, 1895, “Sur les machines algébriques,” Comptes rendus hebdomadaires des séances de l'Académie des sciences, 121, pp. 245-249.
[98] Leonardo Torres Quevedo, 1895, “Machines algébriques,” Association Française por l' Avancement des Sciences, pp.90-102, París. France: Congres de Bordeaux.
[99] Leonardo Torres Quevedo, 1900, “Sur les machines a calculer,” Comptes rendus hebdomadaires des séances de l'Académie des sciences, 130 (1-3), pp. 472-474.
[100] Marcel Deprez, Henri Poincaré, Paul Émile Appell, 1900, “Rapport sur un Mémoire de M. Torres, intitulé “Machines à calculer”,” Comptes rendus hebdomadaires des séances de l'Académie des sciences, 130 (1-3), pp. 874-877.
[101] Leonardo Torres Quevedo, 1900, Sobre la utilidad de emplear ejemplos cinemáticos en la exposición de algunas teorías matemáticas, pp. 7-11, Madrid. Spain: Ateneo de Madrid.
[102] Leonardo Torres Quevedo, 1901, “Sur l’utilité des exemples cinématiques dans l’exposition des théories mathématiques,” Bulletin de la Société Mathématique de France, 29, pp. 167-172.
[103] Leonardo Torres Quevedo, 1901, “Machines a Calculer,” Mémoires présentés par divers savants a l' Académie des Sciences de l'Institut National de France, 32 (9).
[104] Leonardo Torres Quevedo, 1901, “Máquinas algébricas,” Discursos leídos ante la Real Academia de Ciencias Exactas, Físicas y Naturales en la recepción pública del Sr. D. Leonardo Torres Quevedo, pp. 1-33, Madrid. Spain.
[105] Leonardo Torres Quevedo, 1901, “Máquinas algébricas,” Revista de Obras Públicas, 49 (1339), pp. 195-196.
[106] Leonardo Torres Quevedo, 1901, “Máquinas algébricas,” Revista de Obras Públicas, 49 (1341), pp. 205-209.
[107] Leonardo Torres Quevedo, 1917, Mis inventos y otras páginas de vulgarización, Madrid. Spain: Editorial Hesperia.
[108] Leonardo Torres Quevedo, 1906, “Máquinas algébricas,” Ateneo de Madrid, pp. 202-208.
[109] Leonardo Torres Quevedo, 1902, “Machines algébriques,” Revue de Questions Scientifiques, Louvain. France: Société Scientifique de Bruxelles.
[110] Leonardo Torres Quevedo, 1901, “Sur les rapports entre le calcul mécanique et le calcul graphique,” Bulletin de la Société Mathématique de France, 29, pp. 161-167.
[111] Leonardo Torres Quevedo, 1901, “Sur la construction des Machines algébriques,” Revue de Mécanique, pp. 427-431, Paris. France: Dunod.
[112] Leonardo Torres Quevedo, 1906, “Sobre un sistema de notaciones y símbolos destinados á facilitar la descripción de las máquinas,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, 4, pp. 429-442.
[113] Leonardo Torres Quevedo, 1907, “Sobre un sistema de notaciones y símbolos destinados á facilitar la descripción de las máquinas,” Revista de Obras Públicas, 55 (1634), pp. 25-30.
[114] Leonardo Torres Quevedo, 1907, “Sobre un sistema de notaciones y símbolos destinados á facilitar la descripción de las máquinas,” Revista de Ingeniería.
[115] Faydor L. Litvin, 1997, “Development of Gear Technology and Theory of Gearing,” NASA Reference Publication 1406, Cleveland. Ohio. USA: National Aeronautics and Space Administration. Lewis Research Center.
[116] Stephen Radzevich, 2019, “Principal accomplishments in the scientific theory of gearing,” 6th International BAPT Conference “Power Transmissions 2019”, 287 (01001), pp. 1-12, MATEC Web of Conferences.
[117] 小原歯車工業株式会社, 2022, KHK 歯車技術資料, pp. 14, 28-30, 33, Saitama. Japan: 小原歯車工業株式会社.
[118] Federico Thomas, 2008, “A short account on Leonardo Torres’ endless spindle,” Mechanism and Machine Theory, 43 (8), pp. 1055-1063.
[119] Valentin Gomez-Jaureguia, Andres Gutierrez-Garciab, Francisco A.González-Redondoc, Miguel Iglesias, Cristina Manchado, Cesar Otero, 2022, “Torres Quevedo's mechanical calculator for second-degree equations with complex coefficients,” Mechanism and Machine Theory, 172, Paper. 104830.
[120] Jian-Liang Lin, Hong-Sen Yan, 2015, “Modern Reconstruction Research,” Decoding the Mechanisms of Antikythera Astronomical Device, pp. 63-84, Heidelberg. Berlin. Germany: Springer-Verlag.
[121] Jian-Liang Lin, Hong-Sen Yan, 2015, “Assembly Work and Models,” Decoding the Mechanisms of Antikythera Astronomical Device, pp. 213-228, Heidelberg. Berlin. Germany: Springer-Verlag.
[122] Tony Freeth, David Higgon, Aris Dacanalis, Lindsay MacDonald, Myrto Georgakopoulou, Adam Wojcik, 2021, “A Model of the Cosmos in the ancient Greek Antikythera Mechanism,” Scientific Reports, 11 (5821).
[123] Jian-Liang Lin, Hong-Sen Yan, 2011, “Systematic Reconstruction Designs of Antikythera Mechanism,” Journal of Mechanisms and Robotics, Ph.D thesis, Department of Mechanical Engineering, Nation Cheng Kung University, Tainan, Taiwan.
[124] Tsung-Yi Lin, Hong-Sen Yan, 2001, “A Systematic Reconstruction Design of Ancient Chinese Escapement Regulators,” Ph.D thesis, Department of Mechanical Engineering, Nation Cheng Kung University, Tainan, Taiwan.
[125] 《水運儀詳細資料》,南臺科技大學,古機械研究中心。
https://amc.stust.edu.tw/tc/node/sub4-1
[126] Sheng-Chao Tseng, Tsung-Yi Lin, 2011, “Reconstruction design of Power System and Transmission System of Su Song’s Clock Tower,” Master thesis, Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
[127] “Reconstruction Design of Power System and Transmission System of Su Song’s Clock Tower,” Southern Taiwan University of Science and Technology, Ancient Machinery Research Center.
https://amc.stust.edu.tw/en/node/t05
[128] Chun-Wei Chang, Tsung-Yi Lin, Jia-Shiang Su, 2014, “Reconstruction and Innovative Design of Su Song’s Armillary Sphere in the Northern Song Dynasty,” Master thesis, Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
[129] Zheng-Hui Huang, Hong-Sen Yan, Tsung-Yi Lin, 2021, “Systematic Reconstruction Designs of Ancient Chinese Water-Powered Mechanical Astronomical Clocks,” Ph.D thesis, Department of Mechanical Engineering, Nation Cheng Kung University, Tainan, Taiwan.
[130] Zheng-Hui Huang, Tsung-Yi Lin, Hong-Sen Yan, 2021, “Reconstruction designs of an early Chinese astronomical clock with a waterwheel steelyard clepsydra,” Mechanical Sciences, 12 (2), pp. 891-911.
[131] 1001 Inventions, 2005, Al-Jazari's Elephant Clock: An amazing feat of early engineering, London. UK: Google Art & Culture.
[132] Yu-Chieh Chiu, Yu-Hsun Chen, 2021, “Reconstruction Research of Heumgyeonggaknu Time-telling Device in Ancient Korea,” Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
[133] Friedrich W. Kistermann, 2001, “Types of Reconstructed Schickard Calculators,” IEEE Annals of the History of Computing, 23 (1), pp. 82-83.
[134] Frank Hanisch, Bernhard Eberhardt, Benjamin Nill, 2000, “Reconstruction and virtual model of the Schickard calculator,” Journal of Cultural Heritage, 1 (4), pp. 335-340.
[135] José Ignacio Rojas-Sola, Gloria del Río-Cidoncha, Arturo Fernández-de la Puente Sarriá and Verónica Galiano-Delgado, 2021, “Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction,” Machines (This article belongs to the Special Issue Machines throughout History for Technological Development: Analysis from Engineering Graphics), 9 (7), No. 136.
[136] Nikolaus Joachim Lehmann, 1993, “Neue Erfahrungen zur Funktionsfähigkeit von Leibniz' Rechenmaschine,” Studia Leibnitiana, 25 (2), pp. 174-188.
[137] Klaus Badur, Wolfgang Rottstedt, 2004, “Und sie rechnet doch richtig! Erfahrungen beim Nachbau einer Leibniz-Rechenmaschine,” Studia Leibnitiana, 36 (2), pp. 129-146.
[138] Cheng-Hsien Chung, Hong-Sen Yan, 2020, “On the Study of Tiger Shin-Renjyou Mechanical Calculators,” Master thesis, Department of Mechanical Engineering, Nation Cheng Kung University, Tainan, Taiwan.
[139] Bill Casselman, 2009, “3. JAVA simulation of Kelvin's Tide Predicting Machine (the animation shows computing 7 harmonic components),” American Mathematical Society.
http://www.ams.org/publicoutreach/feature-column/fcarc-tidesiii3
[140] Brian Coghlan, Brian Randell, Paul Hockie, Trish Gonzalez, David McQuillan, Reddy O'Regan, 2021, “Investigating the Work and Life of Percy Ludgate,” IEEE Annals of the History of Computing, 43 (1), pp. 19-37.
[141] Edward C. Kinzel, James P. Schmiedeler, Gordon R. Pennock, 2006, “Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming,” ASME Journal of Mechanical Design, 128 (5), pp. 1070-1079.
[142] Edward C. Kinzel, James P. Schmiedeler, Gordon R. Pennock, 2007, “Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming,” ASME Journal of Mechanical Design, 129 (11), pp. 1185-1190.

無法下載圖示 全文公開日期 2029/08/05 (校內網路)
全文公開日期 2029/08/05 (校外網路)
全文公開日期 2029/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE