簡易檢索 / 詳目顯示

研究生: 林吉欽
Chi-Chin Lin
論文名稱: ITO/Ti/ITO與ITO/TiN/ITO互補式記憶體電阻切換之研究
The study of ITO/Ti/ITO and ITO/TiN/ITO complementary resistive switching devices
指導教授: 周賢鎧
Shyankay Jou
口試委員: 王秋燕
Chiu-Yen Wang
蔡豐羽
Feng-Yu Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 互補式記憶體銦錫氧化物界面反應
外文關鍵詞: complementary resistive switching, Ti, ITO, TiOx
相關次數: 點閱:254下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以Ti、TiN與ITO作為互補式電阻式記憶體之電極,堆疊三層電極形成ITO/Ti/ITO與ITO/TiN/ITO,並藉由Ti金屬薄膜與ITO薄膜結合時兩者不相同之氧化勢形成氧化界面層TiOx,使金屬電極與氧化物電極堆疊後具有電阻式記憶體的操作特性。
Ti/ITO與TiN/ITO皆具有雙極式電阻式記憶體元件的操作特性,實驗中經相同退火溫度與時間過後TiN/ITO與Ti/ITO元件界面處皆會產生TiOx之氧化界面層。在元件的I-V操作下,Ti/ITO元件經過退火後高低電阻無法有高的比值,在多次穩定操作後高低電阻比僅達1.5倍;TiN/ITO元件經過退火後之高低電阻比約為103倍,推測是接面狀態的改變所造成。高電阻狀態下TiN/TiOx/ITO元件有著Schottky導電特性;然而Ti/TiOx/ITO元件以Poole-Frenkle emission為高電阻態導電機制,推測Ti與ITO形成的界面氧化層TiOx中存在較多缺陷,因此載子得以藉由捕捉缺陷而傳導。
堆疊三層電極並經過真空熱退火形成之ITO/TiOx/Ti/TiOx/ITO與ITO/TiOx/TiN/TiOx/ITO互補式元件,其中以TiN做為中間電極之元件具有約為20的非線性因子,且隨著TiN中間電極之氮成分提高時,CRS元件有較高的狀態1(HRS/LRS)與狀態ON(LRS/LRS)電阻比。


In this study, we used titanium (Ti)、titanium nitride(TiN) and indium tin oxide (ITO) as the electrodes to fabricate the ITO/Ti/ITO and ITO/TiN/ITO tri-layer stacking structure. With an anneal process interfacial layer will be formed at TiN(Ti)/ITO and ITO/TiN(Ti) interfaces.
The Ti/ITO and TiN/ITO devices showed bipolar switching of resistance. The Ti/ITO device had an average ratio of about 1.5. The TiN/ITO device had a high resistance ratio of 103, possibly caused by the Schottky contact in TiN/TiOx junction. At high resistance state of the TiN/TiOx/ITO conductive modal is governed by Schottky emission; whereas, the Ti/TiOx/ITO is Poole-Frenkel emission at high resistance state, suggesting that there are more defects at interfacial oxide layer TiOx in the Ti/TiOx/ITO device.
Annealing the the ITO/Ti/ITO and ITO/TiN/ITO tri-layer stacks in vacuum produced ITO/TiOx/Ti/TiOx/ITO and ITO/TiOx/TiN/TiOx/ITO complementary resistive switching (CRS) devices. The CRS devices with TiN as intermediate electrodes had nonlinearity factor of about 20. With nitrogen content in TiN electrodes, CRS devices had a higher resistance ratio at the status “1” (HRS/LRS) to the status “ON” (LRS/LRS).

目錄 摘要 ................................... I Abstract.................................. II 誌謝................................... III 目錄....................................IV 圖目錄...................................VII 表目錄...................................XIII 第一章 前言............................... 1 第二章 文獻回顧............................. 2 2.1記憶體簡介 2.1.1鐵電式記憶體(Ferroelectric Random Access Memory, FeRAM) .... 2 2.1.2 相變化式記憶體(Phase-Change Random Access Memory, PCRAM) ... 2 2.1.3磁阻式記憶體(Magneto Resistive Random Access Memory, MRAM) ... 2 2.1.4 電阻式記憶體(Resistive Random Access Memory, RRAM) ...... 3 2.1.5 陣列式堆疊電阻式記憶體................... 4 2.1.6 互補式記憶體切換 (Complementary switch) ........... 7 2.2 電阻式記憶體之電阻切換機構.................... 8 2.2.1 導電燈絲機構(Filamentary conducting path) ............ 8 2.2.2 離子機構(Ionic migration) ................... 9 2.2.3 界面型導電機構(Interface-type conducting path) .......... 10 2.3 漏電流導電機制 2.3.1 歐姆接觸(Ohmic contact) .................... 11 2.3.2 蕭特基發射(Schottky emission) ................. 11 2.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim tunneling, FNT) ........ 12 2.3.4 普爾-法蘭克發射(Poole-Frenkel emission) ............. 13 2.3.5 空間電荷限制傳導(Space-charge-limited conduction) ........ 13 2.4 ITO電極之電阻式記憶體....................... 14 2.5 TiN與Ti之氧化........................... 18 2.6 TiOx為電阻層之研究......................... 24 2.7 CRS互補式記憶體.......................... 28 2.8 研究動機.............................. 33 第 三 章 實驗方法與步驟.......................... 34 3.1 互補式記憶體實驗流程與製備..................... 34 3.1.1實驗材料與藥品規格...................... 34 3.1.2實驗流程........................... 35 3.1.3基材清洗........................... 35 3.2實驗儀器與裝置........................... 40 3.2.1磁控式濺鍍.......................... 40 3.3分析設備.............................. 41 3.3.1 X-ray繞射分析儀 (X-ray Diffractometer, XRD) .......... 41 3.3.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) ...... 42 3.3.3 穿透式電子顯微鏡 (Transmission Electron Microscope , TEM) .... 43 3.3.4 Keitheley 2410電性量測儀................... 43 3.3.5 X光射線光電子能譜儀(X-ray Photoelectron Spectrum, XPS) ..... 44 第四章 結果與討論............................. 46 4.1 ITO/TiOx/Ti/TiOx/ITO元件分析.................... 46 4.1.1 Ti、ITO薄膜XRD分析..................... 46 4.1.2 Ti/ITO薄膜TEM分析...................... 48 4.1.3 ITO/TiOx/Ti/TiOx/ITO元件電性分析................ 50 4.2 ITO/TiOx/TiN/TiOx/ITO 元件分析................... 55 4.2.1 TiN薄膜XRD分析....................... 55 4.2.2 ITO/TiN/ITO元件TEM分析................... 56 4.2.3 ITO/Ti元件電性分析..................... 61 4.2.4 ITO/TiOx/TiN/TiOx/ITO元件電性分析............... 65 4.3 不同氮含量之TiN中間電極對於CRS元件特性影響............ 70 4.3.1 不同氮含量之TiN薄膜XRD分析................. 70 4.3.2 不同氮含量之TiN薄膜SEM分析................. 71 4.3.3 不同氮含量之TiN薄膜XPS分析................. 73 4.3.4 ITO/TiN(5%)/ITO CRS元件................... 79 4.3.5 ITO/TiN(20%)/ITO CRS元件.................. 81 4.3.5 ITO/TiN(30%)/ITO CRS元件.................. 83 4.4 不同中間電極之電阻式記憶體.................... 84 4.5實驗結果與討論.......................... 88 第五章 結論................................ 89 第六章 未來展望............................. 89 參考文獻................................. 90 附錄................................... 96

[1] H. Ishiwara, "Impurity substitution effects in BiFeO3 thin films from a viewpoint of FeRAM applications", Current Applied Physics 12, 603-611, 2012.
[2] N. Settera, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H.Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V.Taylor, T. Yamada, S. Streiffer, "Ferroelectric thin films: Review of materials, properties, and applications", Journal of Applied Physics 100, 051606, 2006.
[3] G. A. Gibson, A. Chaiken, K. Nauka, C. C. Yang, R. Davidson, A. Holden, R. Bicknell, B. S Yeh, J. Chen, H. Liao, S. Subramanian, D. Shut, J. Kaminski and Z. L. Weber, "Phase-change recording medium that enables ultrahigh-densityelectron-beam data storage", Applied Physics Letters 86, 051902, 2005
[4] R. C. Sousa, I. L. Prejean, "Non-volatile magnetic random access memories(MRAM)", Competes Rends Physique 6, 1013–1021, 2005.
[5] A. Saw, "Resistive switching in transition metal oxides", Materials Today 11, 28-36, 2008.
[6] J. Shin, G. Choi, J. Woo, J. Park, S. Park, W. Lee, S. Kim, M. Son, H. Hwang,"MIM-type cell selector for high-density and low-power cross-point memoryapplication", Microelectronic Engineering 93, 81-84, 2012.
[7] Y. H. Do, J. S. Kwan , J. P. Hong, "Nonvolatile unipolar and bipolar resistive switching characteristics in co-doped TiO2 thin films with different compliance currents", Journal of the Korean Physical Society 55, 1009-1012, 2009.
[8] A. R. Lee, Y. Cuba, G. H. Beak, H. S. I’m, J. P. Hong, "Multi-level resistive switching observations in asymmetric Pt/Ta2O5−x/TiOxNy/TiN/Ta2O5−x/Pt multilayer configurations", Applied Physics Letters 103, 063505, 2013.
[9] R. Rosezin, E. Linn, C. Kügeler, R. Bruchhaus, and R. Waser, "Crossbar logic using bipolar and complementary resistive switches", IEEE Electron Device Letters 32, 710-712, 2011.
[10] E. Linn, R. Rosezin, C. Kügeler, R. Waser, "Complementary resistive switches for passive nanocrossbar memories", Nature Material 9, 403-406, 2010.
[11] J. Wooa, D. Lee, G.Choi, E. Cha, S. Kim, W. Lee, S. Park, H. Hwang, "Selector-less RRAM with non-linearity of device for cross-point array applications", Microelectronic Engineering 109, 360-363, 2013
[12] J. J. Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W. D. Li, W. Yi, D. A. A. Ohlberg, B. J. Choi, W. Wu, J. H. Nickel, G. M. Ribeiro, R. S. Williams, "Engineering nonlinearity into memristors for passive crossbar applications", Applied Physics Letters 100, 113501, 2012
[13] F. Nardi, S. Balatti, S. Larentis, D. Ielmini, "Complementary switching in metal oxides: Toward diode-less crossbar RRAMs", International Electron Devices Meeting (IEDM), 31.1.1-31.1.4, 2011.
[14] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, "TiO2 -based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application", Journal of Applied Physics 109, 033712, 2011.
[15] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. Chung, I. Yoo, K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2-x bilayer structures", Nature Materials 10, 625–630, 2011.
[16] H. Akinaga, H. Shima, "Resistive random access memory (ReRAM) based on metal oxides", Proceedings of the IEEE 98, 2237-2251, 2010.
[17] R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges", Advanced Materials 21, 2632-2663, 2009.
[18] S. Yu, X. Guan, H. S. P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trapassisted-tunneling model", Applied Physics Letters 99, 063507, 2011.
[19] S. O. Kasap 2006. Principles of Electronic Materials and Devices, 3th ed., McGraw Hill, 443-447.
[20] Y. S. Fan, P. T. Liu, L. F. Teng, C. H. Hsu, "Bipolar resistive switching characteristics of Al-doped zinc tin oxide for nonvolatile memory applications", Applied Physics Letters 101, 052901, 2012.
[21] C. Ye, C. Zhan, T. M. Tsai, K. C. Chang, M. C. Chen,T. C. Chang, T. Deng, and H. Wang, "Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon", Applied Physics Express 7, 034101, 2014.
[22] H. C. Tseng, T. C. Chang, Y. C. Wu, S. W. Wu, J. J. Huang, Y. T. Chen,J. B. Yang, T. P. Lin,
S. M. Sze, M. J. Tsai, Y. L. Wang, A. K. Chu, "Impact of electroforming current on self-compliance resistive switching in an ITO/Gd:SiOx/TiN structure", IEEE Electron Device Letters 34, 858-860 ,2013.
[23] A. W. Groenland, I. Brunets, A. Boogaard, A. A. I. Aarnink, A. Y. Kovalgin, J. Schmitz, "Thermal and plasma-enhanced oxidation of ALD TiN", Conference Proceeding:SAFE, 468-471, 2008.
[24] N. C. Saha, H. G. Tompkins, "Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study", Journal of Applied Physics 72, 3072, 1992.
[25] 黃欣萍,「界面氧化鈦對Ti/ITO及ITO/Ti元件之雙極式電阻切換影響」國立台灣科技大學材料科學與工程所碩士學位論文,民國103年。
[26] 黎佳惠,「界面氧化鋁對Al/TaOxNy/TaN及TaN/TaOxNy/Al元件之雙極式電阻切換影響」,國立台灣科技大學材料科學與工程所碩士學位論文,民國102年。
[27] 楊秉融,「摻鋁氧化鋅對透明AZO/SiOx/ITO元件之電阻切換影響」,國立台灣科技大學
材料科學與工程所碩士學位論文,民國102年。
[28] J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, H. Hwang, "Resistive switchingcharacteristics of ultra-thin TiOx", Microelectronic Engineering 88, 1136-1139,2011.
[29] L. Zhang, R. Huang , D. Gao, Y. Pan, S. Qin, Z. Yu, C. Shi, Y. Wang, "Thermally stable TaOx-based resistive memory with TiN electrode for MLC application", Solid-State and Integrated Circuit Technology ,1160-1162, 2010.
[30] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, M. H. Chi, "Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode", Applied Physics Letters 94, 213502 , 2009.
[31] S. M. Lin , J. S. Huang , W. C. Chang , T. C. Hou , H. W. Huang , C. H. Huang , S. J. Lin , Y. L. Chueh, "Single-ttep formation of ZnO/ZnWOx bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states", Applied Material Interfaces 5, 7831–7837, 2013.
[32] Y. C. Bae, A. R. Lee, J. S. Kwan, H. Im, J. P. Hong, "Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2-x/Pt matrix", Current Applied Physics 11, e66-e69, 2011.
[33] Y. C. Bae, A. R. Lee, J. B. Lee, J. H. Koo, K. C. Kwon, J. G. Park, H. S. Im, and J. P. Hong, "Oxygen ion drift-induced complementary resistive switching in homo TiOx/TiOy/TiOx and hetero TiOx/TiON/TiOx triple multilayer frameworks", Advanced Functional Materials 22, 709-719, 2012.
[34] Y. Z. Tang, Z. Fang, X. P. Wang, B. B. Weng, Z. X. Chen, G. Q. Lo, "A novel RRAM stack with TaOx/HfOy double-switching-layer configuration showing low operation current through complementary switching of back-to-back connected subcells", IEEE Electron Ddevice Letters 35, 627-629, 2014.
[35] X. Liu, S. Md. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G. Y. Jung, H. Hwang, "Complementary resistive switching in niobium oxide-based resistive memory devices", IEEE Electron Ddevice Letters 34, 235-237, 2013.
[36] Y. Yang, P. Sheridan, W. Lu, "Complementary resistive switching in tantalum oxide-based resistive memory devices", Applied Physics Letters 100, 203112, 2012.
[37] C. W. Hsu, C. C. Wa1, I. T. Wang, M. C. Chen, C. L. Lo, Y. J. Lee, W. Y. Jang, C. H. Lin, T. H. Hou1, "3D vertical TaOx/TiO2 RRAM with over 103 self-rectifying ratio and sub-μA operating current", IEDM Electron Ddevices Meeting, 10.4.1-10.4.4, 2013.
[38] I. Milosev, H.-H. Strehblow, B. Navinsek, M. M. Hukovie "Electrochemical and thermal oxidation of TiN coatings studied by XPS", Surface And Interface Analysis 23, 529-539, 1995.
[39] S. Doniach, M. sunjic, "Many-electron singularity in x-ray photoemission and x-ray line spectra from metals", Journal of Physics C: Solid State 3, 285-291, 1970.
[40] D. A. Shirley,"High-resolution X-Ray photoemission spectrum of the valence bands of gold", Physical Review B 5, 4709-4714, 1972.
[41] MD. M. Hasan, "Work function tuning in sub-20nm titanium nitride (TiN) metal gate: mechanism and engineering", MS Thesis, King Abdullah University of Science and Technology, 2010.
[42] Z. Li, T. Schram, T. Witters, J. Tseng, S. D. Gendt, K. D. Meyer, "Oxygen incorporation in TiN for metal gate work function tuning with a replacement gate integration approach", Microelectronic Engineering 87, 1805–1807, 2010.
[43] S. A. Vitale, J. Kedzierski, P. Healey, P. W. Wyatt, and C. L. Keast, "Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation", Transactions On Electron Devices 58, 419-426, 2011.
[44] H. Shima, N. Zhong, H. Akinaga, "Switchable rectifier built with Pt/TiOx/Pt trilayer", Applied Physics Letters 94, 082905, 2009.
[45] S. S. Ang, "Titanium nitride films with high oxygen concentration", Journal of Electronic Materials 17, 95-100, 1988.
[46] K. P. Nikhil, J.R. Daniel, E. Arac, P.J. King, S. Ganti, S.K. Kwa, "Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films", Thin Solid Films 578, 31-37, 2015.
[47] D. J. O’Connor, B. A. Sexton, R. St. C. Smart (Eds) 2003. Surface Analysis Methods in Materials Science. 2nd ed., Springer, U.S.A.
[48] C. A. Volkert, A. M. Minor, “Focused ion beam microscopy and micromachining”, MRS Bulletin 32, 389-399, 2007.
[49] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben 1995. Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Minnesota, U.S.A.
[50] D. R. Gaskell 1995. Introduction to the Thermodynamics of Materials. 3th ed., Washington, DC: Taylors & Francis.
[51] Casa XPS, Casa software Ltd., 2006.

QR CODE