簡易檢索 / 詳目顯示

研究生: 劉宇軒
Yu-Hsuan Liu
論文名稱: 直接雷射照明系統中雷射光斑對影像解析度影響之量化與雷射掃描照明系統在此議題的優異表現
Quantization of Laser Speckle's Impact on Image Resolution of Direct Laser Illumination Systems and Laser Scanning Illumination System's Exceptional Performance on This Topic
指導教授: 陳致曉
Chih-Hsiao Chen
口試委員: 黃柏仁
Bohr-Ran Huang
黃忠偉
Jong-Woei Whang
陳鴻興
Hung-Shing Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 雷射光斑尺寸雷射影像檢測系統解析度
外文關鍵詞: Laser speckle size, Laser range-gated system, Resolution
相關次數: 點閱:199下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射光本身的高同調特性會使雷射影像檢測系統所接收到的影像產生雷射光斑現象。此現象無疑降低了影像品質,影響觀察者觀看事物時的清晰度和自然性。現行對於雷射影像檢測系統的影像品質優劣判斷,大多利用人因實驗概括表示。
    因此,本論文提出一種雷射光斑尺寸與影像解析度間的數學量化模型。此套數學模型能夠量化使用不同抑制雷射光斑現象方法的影像檢測系統所形成的雷射光斑尺寸。以新式發明專利技術取代既有雷射影像檢測系統的照明光源,計算該系統於檢測器上所形成的雷射光斑尺寸。最終模擬不同抑制雷射光斑方法的影像檢測系統,並提出降低雷射光斑尺寸會使檢測器的影像解析度提升與影像檢測系統的檢測距離增加。


    The high coherence characteristics of the laser light itself cause a laser speckle phenomenon in the image received by the laser range-gated system. This phenomenon undoubtedly reduces the image quality and affects the sharpness and naturalness when the observer viewing things.
    Therefore, this dissertation proposes a mathematical quantitative model between laser speckle size and image resolution. This mathematical model is capable of quantifying the size of the laser speckle formed by a laser range-gated system using different methods of suppressing laser speckle phenomena. The new invention patent technology replaces the illumination source of the existing laser range-gated system. Calculated laser range-gated system, the size of the laser speckle formed on the detector. Finally, the different methods of suppressing laser speckle is simulated by a laser range-gated system. It is proposed that reducing the size of the laser speckle will increase the image resolution of the detector and the detection distance of the laser range-gated system.

    摘要 Abstract 誌謝 目錄 圖目錄 第一章 緒論 1-1 前言 1-2 研究動機 1-3 文獻回顧 1-4 研究目的 第二章 影像品質 2-1 雷射光斑對比度 2-2 雷射光斑尺寸 第三章 雷射影像檢測系統之光源型態 3-1 光學透鏡之光源型態 3-2 擴散板之光源型態 3-3 發明專利之光源型態 第四章 雷射影像檢測系統之相關面積模擬 4-1 光學透鏡之光源型態模擬 4-2 擴散板之光源型態模擬 4-3 發明專利之光源型態模擬 4-4 模擬結果及分析 第五章 結論 參考文獻 附錄 (附錄一)光學透鏡之光源型態 (附錄二)擴散板之光源型態 (附錄三)發明專利之光源型態 (附錄四)改變檢測器至目標物體之距離

    [1] Vollmerhausen, R. H., Jacobs, E. L., Devitt, N. M., Maurer, T., & Halford, C. (2003, August). Modeling the target acquisition performance of laser-range-gated imagers. In Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV (Vol. 5076, pp. 101-112). International Society for Optics and Photonics.
    [2] Williams, G. M., Rheinheimer, A. L., Aebi, V. W., & Costello, K. A. (1995, April). Electron-bombarded back-illuminated CCD sensors for low-light-level imaging applications. In Charge-Coupled Devices and Solid State Optical Sensors V (Vol. 2415, pp. 211-236). International Society for Optics and Photonics.
    [3] Driggers, R. G., Vollmerhausen, R. H., Devitt, N. M., Halford, C. E., & Barnard, K. J. (2003). Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance. Optical Engineering, 42(3), 738-747.
    [4] Oxford, D., & Espinola, R. L. (2010, April). Comparison of speckle reduction techniques on the identification of human activities in laser range-gated SWIR imaging. In Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXI (Vol. 7662, p. 766206). International Society for Optics and Photonics.
    [5] Chen, C. H. (2018). U.S. Patent Application No. 15/864,556.
    [6] 陳冠廷(2018)。直接雷射照明系統中雷射光斑對比度之計算與雷射掃描照明系統在此議題的優異表現(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    [7] Farrokhi, H., Rohith, T. M., Boonruangkan, J., Han, S., Kim, H., Kim, S. W., & Kim, Y. J. (2017). High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers. Scientific Reports, 7(1), 15318.
    [8] Goodman, J. W. (2007). Speckle phenomena in optics: theory and applications. (p.26) Roberts and Company Publishers.
    [9] Goodman, J. W. (2007). Speckle phenomena in optics: theory and applications. (pp. 67-73) Roberts and Company Publishers.
    [10] Weisstein, Eric W. "Gaussian Function." Retrieved from http://mathworld.wolfram.com/ GaussianFunction.html
    [11] Goodman, J. W. (2007). Speckle phenomena in optics: theory and applications. (p.70) Roberts and Company Publishers.
    [12] Yurlov, V., Lapchuk, A., Yun, S., Song, J., & Yang, H. (2008). Speckle suppression in scanning laser display. Applied optics, 47(2), 179-187.
    [13] Kubota, S., & Goodman, J. W. (2010). Very efficient speckle contrast reduction realized by moving diffuser device. Applied optics, 49(23), 4385-4391.
    [14] Goodman, J. W. (2007). Speckle phenomena in optics: theory and applications. (p.72) Roberts and Company Publishers.
    [15] Weik, M. H. (2000). Lambert's cosine law. In Computer Science and Communications Dictionary (pp. 868-868). Springer, Boston, MA.

    QR CODE