簡易檢索 / 詳目顯示

研究生: 許鑫堯
Hsin-Yao Hsu
論文名稱: 1700-2500nm波段高光譜儀之設計、分析與模擬及機載遙測之應用
Optical Design and Analysis of Hyperspectral Imaging System for 1700-2500nm and its Application in Airbone Remote Sensing
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Shen-Jhih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 162
中文關鍵詞: Offner光譜儀短波紅外光波段遙測光柵光譜解析度
外文關鍵詞: Offner, SWIR, Remote sensing, Grating, Spectral resolution
相關次數: 點閱:637下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對機載高光譜儀遙測之特殊規格,研發一套應用於1700nm-2500nm波段之Offner高光譜儀完整設計流程。首先為了符合空中載具之飛行速度與高度以避免失焦,由理論推導來進行光學系統的設計,驗證選定的偵測器是否合適。選定合適的偵測器規格之後,利用理論建立Offner高光譜儀架構參數,
    其次,利用Code V光學成像系統軟體實現,分析各種光柵條紋間距時各項相關參數,如RMS斑點大小、元件曲率半徑,光柵閃耀角與短邊長度、製程時間、系統大小,並在分析曲率半徑時須特別篩選符合市售之光學元件,以達到成本考量,其他參數亦須符合各自的規範。衡量以上條件之後,可以得到合適的光柵間距與組件曲率半徑,並利用此參數進行系統優化,最後分析光譜總解析度與影像解析度。
    最後,利用Trace pro光線追跡軟體,使用其非序列光線之特性,並加入光源與偵測器之影響,使結果與真實情況更為接近。分別分析點光源(1nm × 1nm)與狹縫光源條件在偵測器規格為底片規格與偵測器規格之參數分析。最終可得到本研究設計波段1700nm~2500nm之機載高光譜儀之影像解析度為、光譜解析度。
    本研究開發1700nm~2500nm波段之Offner系統高空遙測光譜儀,從參數建立、分析流程、模擬呈現、規格篩選、數據分析等步驟,建立一套完整的Offner光譜儀設計流程。


    This study focuses on the special specifications of airborne hyperspectral telemetering, and developed a complete design flow for the Offner hyperspectrometer used for 900 ~ 1700 nm wavebands. Choose the suitable detector based on aircraft speed and altitude,then use the theory to establish the Offner hyperspectral system parameters.
    Second, using Code V optical imaging system software to analyze various parameters related to grating strip spacing. Analysis of radius of curvature must conform to the size of commercially available optical components and other parameters must also comply with their respective specifications. we can get the appropriate grating pitch and component radius of curvature, and use this parameter to optimize the system, and finally analyze the total spectral resolution and image resolution.
    Finally, we use the Trace pro ray tracing software to add the influence of the light source and the detector to make the result closer to the real situation. Finally, we can get the image resolution and spectral resolution of the airborne hyperspectral instrument with a band of 1700nm to 2500nm, and the experimental results are satisfactory

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 XV 符號定義總表 XX 第1章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 本文架構 3 第2章 相關原理探討及參數介紹 4 2.1 Offner光譜儀架構原理 4 2.2 Offner 光譜儀設計流程 6 2.3 光譜解析度 (spectral resolution) 8 2.4 繞射極限解析度 (Diffraction limit resolution) 10 2.5 調制轉移函數(Modulation Transfer Function, MTF) 14 2.6 聚焦縱深(Depth of Focus, DOF) 17 第3章 光譜儀偵測器設計規範 19 3.1 系統設計大綱 19 3.2 偵測器選擇 21 3.3 Fore optics (前端光學系統) 22 3.4 Sensor format (感測器規格) 24 3.5 Imaging spectrometer system (光譜儀成像系統) 25 3.6 Airplane push-broom parameter (飛機飛行速度影響) 27 第4章 序列光線追跡模擬分析 28 4.1 Code V光學/成像系統設計分析軟體介紹 28 4.2 系統模型建立步驟 29 4.3 RMS 斑點大小比較分析 39 4.4 元件曲率半徑分析 41 4.5 光柵閃耀角與短邊長度分析 42 4.6 製程時間與系統大小分析 46 4.7 系統總光譜解析度分析 50 第5章 非序列光線追跡模擬分析 57 5.1 Trace pro光學/成像系統設計分析軟體介紹 57 5.2 底片規格(4um)作點光源(1nm × 1nm)分析 62 5.3 底片規格(4um)作狹縫光源(20 um × 20um)分析 82 5.4 偵測器規格(30um)作點光源(1nm × 1nm)分析 101 5.5 偵測器規格(30um)作狹縫光源(20 um × 20um)分析 120 第6章 結論 138 參考文獻 140

    [1] D. Tao, G. Jia, Y. Yuan et al., “A digital sensor simulator of the pushbroom Offner hyperspectral imaging spectrometer,” Sensors (Basel), vol. 14, no. 12, pp. 23822-42, Dec 11, 2014.
    [2] A. A. Gowen, C. P. O'Donnell, P. J. Cullen et al., “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends in Food Science & Technology, vol. 18, no. 12, pp. 590-598, 2007/12/01/, 2007.
    [3] X. Prieto-Blanco, C. Montero-Orille, B. Couce et al., “Analytical design of an Offner imaging spectrometer,” Optics Express, vol. 14, no. 20, pp. 9156-9168, Oct, 2006.
    [4] N. G. R. Broderick, and C. M. de Sterke, “Theory of grating superstructures,” Physical Review E, vol. 55, no. 3, pp. 3634-3646, 03/01/, 1997.
    [5] P. S. Antsiferov, L. A. Dorokhin, and P. V. Krainov, “Grazing incidence off Rowland spectrometer with shifted slit,” Review of Scientific Instruments, vol. 87, no. 5, pp. 053106, 2016/05/01, 2016.
    [6] A. N. Kumar Reddy, and D. K. Sagar, “Half-width at half-maximum, full-width at half-maximum analysis for resolution of asymmetrically apodized optical systems with slit apertures,” Pramana, vol. 84, no. 1, pp. 117-126, 2015/01/01, 2015.
    [7] N. I. Zheludev, “What diffraction limit?,” Nature Materials, vol. 7, pp. 420, 06/01/online, 2008.
    [8] R. Kumar, “Effect of Airy disk on schlieren diffraction interferometer,” Optik - International Journal for Light and Electron Optics, vol. 122, no. 2, pp. 105-109, 2011/01/01/, 2011.
    [9] G. Boreman, “Modulation Transfer Funcion in Optical and Electro-optical Systems,” SPIE-The International Society for Optical Engineering, pp. 20-25 (2001).
    [10] D. Leger, J. Duffaut and F. Robinet, “MTF Measurement using Spotlight,” Geoscience and Remote Sensing Symposium, Pasadena, pp. 2010-2012 (1994).
    [11] C. A. Mack, “The Rayleigh depth of focus,” Microlithography World, vol. 13, no. 1, pp. 14-15, Feb, 2004.
    [12] D. Tao, G. Jia, Y. Yuan et al., “A digital sensor simulator of the pushbroom Offner hyperspectral imaging spectrometer,” Sensors (Basel), vol. 14, no. 12, pp. 23822-42, Dec 11, 2014.
    [13] D. J. Mulla, “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps,” Biosystems Engineering, vol. 114, no. 4, pp. 358-371, 2013.
    [14] D. L. Voronov, T. Warwick, and H. A. Padmore, “- Multilayer-coated blazed grating with variable line spacing and a variable blaze angle,” vol. - 39, no. - 21, pp. - 6137, 2014.
    [15] P. Getreuer, “ASurvey of Gaussian Convolution Algorithms,” Image Processing On Line, vol. 3, pp. 286-310, 2013.
    [16] J. Spanier, and J. H. Pengilly, “Preface,” Mathematical and Computer Modelling, vol. 23, no. 8, pp. xi-xiii, 1996/04/01/, 1996.
    [17] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A Tutorial on Fast Fourier Sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 57-66, 2008.
    [18] G. V. Vladimir, “Modern optics of Gaussian beams,” Physics-Uspekhi, vol. 55, no. 4, pp. 412, 2012.
    [19] R. L. Lucke, “The relation between physical and computer-generated point spread functions and optical transfer functions,” American Journal of Physics, vol. 69, no. 12, pp. 1237-1244, 2001/12/01, 2001.

    無法下載圖示 全文公開日期 2023/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE