簡易檢索 / 詳目顯示

研究生: 梁安傑
An-Jie Liang
論文名稱: 雙繞射技術應用於高解析度雷射光學尺之開發
Development of a resolution-enhanced laser encoder by using double-diffraction technique
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 鄭超仁
Chau-Jern Cheng
郭鴻飛
Hung-Fei Kuo
吳文中
Wen-Jong Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 139
中文關鍵詞: 光柵雷射光學尺雙繞射高解析度位移旋轉角六自由度
外文關鍵詞: Grating, Laser Encoder, Double Diffraction, High Resolution, Displacement, Rotation angle, Six degrees-of-freedom
相關次數: 點閱:382下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套以「雙繞射」為設計概念進行系統開發的雙繞射式雷射光學尺,用以進行位移及旋轉角量測。此套雙繞射式雷射光學尺系統整合外差干涉術、光柵干涉術、雙繞射光路及分光技術等設計概念進行開發,使系統具備高解析度、高穩定度及六自由度的量測能力。
    此套雙繞射式雷射光學尺系統透過「雙繞射」的光路設計,除可使通過光柵後的繞射光再次穿過光柵,用以引入加倍的相位變化量,有效提升雷射光學尺的系統解析度之外,亦可解決傳統雷射光學尺存在離焦偵測之問題,即當光柵產生面外方向移動時,系統仍可持續提供正確的面內位移量測訊息。此外,藉由光柵、分光鏡與反射鏡的配合,使系統於單一偵測架構下即具備雙自由度位移及旋轉角度的量測能力。為了進一步延伸此套雙繞射式雷射光學尺的量測能力,我們藉由分光技術的運用成功建構出三組偵測架構,使雷射光學尺系統具備六自由度(x, y, z, θx, θy, θz)的精密量測能力。
    為了驗證本研究所提出的雙繞射式雷射光學尺之可行性及其系統性能,我們分別使用商用六軸微定位平台及長行程定位平台進行多項實驗,並將雷射光學尺的量測結果與平台內建的電容式位移計及線性光學尺所量測到的結果相比較。由實驗結果證明,此套雙繞射式雷射光學尺量測技術可在不改變光學架構下,同時提供六自由度位移及旋轉角度的量測資訊,其位移與旋轉角度的解析度分別可達2 nm與300 nrad,重複性分別優於1.7 nm及51 nrad,量測速度極限可達150 μm/s,具備優異的量測性能,可廣泛應用於精密量測、工具機業及自動化光學檢測等場合中。


    In this study, a resolution-enhanced laser encoder with “double diffraction” as its primary design concept for precision measurement of displacement and rotation is proposed. The double-diffraction-type laser encoder is developed by combining heterodyne interferometry, grating interferometry, double diffraction optical configuration, as well as the beam splitting technique. It has the capability of measuring in six degrees-of-freedom (DOF) with high resolution and stability.
    The proposed system takes advantage of a “double diffraction” optical configuration, which directs diffracted light to pass through a grating twice without additional optical components, thereby doubling the phase change induced by grating displacement, effectively improving the resolution of the laser encoder. In addition, the design of the optical path configuration of the system can overcome the problem of defocusing of conventional laser encoders, that is when the grating moves in the out-of-plane direction, the proposed laser encoder can continue to provide accurate in-plane displacement measurement information. Furthermore, through the incorporation of mirrors and a beamsplitter, the system is given the ability to measure in 2 DOFs, both displacement and rotation, using only a single detection structure. To extend the measurement capability of the resolution-enhanced laser encoder, we combined three detection structures into one measurement system possessing the ability to perform simultaneous precision measurement in six DOFs (x, y, z, θx, θy, θz).
    In order to verify the feasibility and performance of the proposed laser encoder, a commercial 6-DOF precision positioning stage, as well as a long-stroke nano-displacement stage were used in conjunction with the system to perform several experiments, with the measurement results obtained from the proposed system compared with the built-in capacitive sensor of the commercial six DOF precise position stage, as well as the built-in linear encoder the long-stroke nano-displacement stage. As displayed in the results, the proposed resolution-enhanced laser encoder has the ability to perform precision displacement and rotation measurement in six DOFs without needing to change the optical configuration, as well as overcoming the defocusing problem inherent to laser encoders. The resolution of the displacement measurement system is twice that of conventional laser encoders. The system resolutions for displacement and rotation measurement are 2 nm and 300 nrad, and the repeatability are better than 1.7 nm and 51 nrad, respectively. The maximum velocity for displacement measurement can reach 150 μm/s. The proposed laser encoder is well-suited for applications within precision manufacturing, tool machine industry, automatic optical measurement, nanotechnology, semi-conductor technology and other related fields.

    摘要 I Abstract II 致謝 IV 符號說明 V 目錄 IX 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1位移量測干涉儀之文獻回顧 2 1.2.2旋轉角量測干涉儀之文獻回顧 10 1.2.3位移及旋轉角量測(多自由度)干涉儀之文獻回顧 14 1.2.4雙繞射技術之文獻回顧 21 1.3 研究目的 28 1.4 論文架構 29 第二章 基礎理論 31 2.1 外差干涉術 31 2.1.1移動(旋轉)光柵法 32 2.1.2旋轉波片法 34 2.1.3賽曼雷射 35 2.1.4聲光調制技術 37 2.1.5電光調制技術 38 2.1.6波長調制技術 40 2.1.7外差式麥克森干涉儀 41 2.2 光柵干涉術(雷射光學尺) 43 2.2.1都卜勒效應 43 2.2.2外差式光柵干涉儀 45 2.3雙繞射干涉儀量測技術 47 2.4小結 49 第三章 雙繞射技術應用於高解析度雷射光學尺之開發 50 3.1 單自由度雙繞射式雷射光學尺之設計原理 50 3.2 雙自由度雙繞射式雷射光學尺 53 3.3 四自由度雙繞射式雷射光學尺 56 3.4六自由度雙繞射式雷射光學尺 58 3.5 相位解調系統 60 3.6系統所用到之實驗儀器及光學元件 62 3.7 小結 63 第四章 實驗結果與討論 65 4.1單自由度位移(x)量測實驗 65 4.2雙自由度旋轉角(θy)量測實驗 68 4.3六自由度位移及旋轉角(x, y, z, θx, θy, θz)量測實驗 71 4.3.1位移(x, y, z)量測實驗 72 4.3.2旋轉角(θx, θy, θz)量測實驗 74 4.3.3隨機波運動量測實驗 76 4.4量測系統性能、極限測試與討論 78 4.4.1解析度量測 78 4.4.2重複性量測 80 4.4.3量測速度極限測試 82 4.4.4系統穩定度測試 84 4.4.5不離焦驗證實驗測試 85 4.4.6直線度誤差量測 88 4.5小結 90 第五章 誤差分析 91 5.1系統誤差 91 5.1.1光源方位角偏差所造成之影響 92 5.1.2檢偏器方位角偏差所造成之影響 94 5.1.3四分之一波片(QWP)方位角偏差所造成之影響 95 5.1.4檢偏器消光比所造成之影響 97 5.1.5 Beam Displacer消光比所造成之影響 98 5.1.6光柵對位誤差於位移量測系統中造成之影響 102 5.2隨機誤差 104 5.2.1外界環境振動 104 5.2.2材料熱膨脹係數造成的影響 104 5.3小結 105 第六章 結論與討論 106 6.1結論 106 6.2未來展望 108 參考文獻 109 附錄 113

    1. A.A. Michelson, “The relative motion of the Earth and of the luminiferous ether,” Am. J. Sci., 3(22), pp.120-129, 1881.
    2. SIOS Meßtechnik GmbH:http://www.sios-de.com/products/calibration-interferometer
    3. Reinshaw:http://www.renishaw.com/en/renishaw-unveils-the-new-xm-60-multi-axis-calibrator--39275
    4. J. N. Cui, Z. Q. He, Y. W. Jiu, J. B. Tan and T. Sun, “Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity,” Appl. Opt., 55(25), pp.1159, 2016.
    5. T. Suzuki and R. Hioki, “Translation of light frequency by a moving Grating,” J. Opt. Soc. Am., 57(12), p.1551, 1967.
    6. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt., 9(3), pp.649-652, 1970.
    7. M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett., 9(8), pp.319-321, 1984.
    8. D. C. Su, M. H. Chiu, and C. D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” J. Opt., 27(1), pp.19-23, 1996.
    9. H. Choi, J. La, and K. Park, “Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer,” Rev. Sci. Instrum., 77, pp.106102, 2006.
    10. Y. Xie and Y. Z. Wu, “Zeeman laser interferometer errors for high-precision measurements,” Appl. Opt., 31(7), pp.881-884, 1992.
    11. J. Y. Lee, H. L. Hsieh and Z. Y. Lin, “Heterodyne grating interferometry based on sinusoidal phase modulation for displacement measurement,” Proc. SPIE, 10329, pp.103293S, 2009.
    12. Y. k. Park and K. M. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett., 36(3), pp. 331-333, 2011.
    13. M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt., 33(7), pp.1293-1298, 1994
    14. J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE, 6280, p.62800J, 2006.
    15. C. G. Wang, “Autocollimation form dual-frequency laser diffraction grating interferometer design and analysis,” IEEE, 978, p.148-150, 2010.
    16. H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol., 21(11), p.115304, 2010.
    17. M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt., 38(1), pp.113-120, 1999.
    18. V. C. P. Kumar, C. Joenathan, A. Ganesan, and U. Somasundram, “Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple reflections,” Opt. Eng., 55(8), pp.084103, 2016.
    19. S. T. Lin and W. J. Syu, “Heterodyne angular interferometer using a square prism,” Opt. Laser Eng., 47(1), pp.80-83, 2009.
    20. H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, “Development of an angular displacement measurement technique through birefringence heterodyne interferometry,” Opt. Express, 24(7), pp.6802-6813, 2016.
    21. J. Qi, Z. Wang, J. H. Huang, B. Yu, J. Gao, and S. Donati, “Enhancing the sensitivity of roll-angle measurement with a novel interferometric configuration based on waveplates and folding mirror,” Rev. Sci. Instrum., 87(3), pp.87, 2016.
    22. J. Qi, Z. Wang, J. H. Huang, and J. Gao, “Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement,” Opt. Express., 26(8), pp. 9634-9644, 2016.
    23. W. Hou, “A new design of high precision Differential Plane Mirror Interferometer,” Proc. SPIE, 7544, pp. 75446V-1-6, 2010.
    24. A. Kimura, W. Gaoa, W. J. Kima, K. Hosonoa, Y. Shimizua, L. Shi and L. Zeng., “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng., 36(4), pp.576-585, 2012.
    25. W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann., 56(1), pp.529-532, 2007.
    26. W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann. Manuf. Technol., 60(1), pp.515-518, 2011.
    27. X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., 37(3), pp.771-781, 2013.
    28. F. Qibo, Z. Bin, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express., 21(22), pp.25805-25819, 2013.
    29. 陳暐,「六自由度Wollaston雷射光學尺」,國立台灣科技大學,碩士論文,2016。
    30. F. Cheng and K. C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt., 50(22), pp.4550-4556, 2011.
    31. J. Y. Lee and G. A. Jiang, “Displacement measurement using a wavelength phase-shifting grating interferometer,” Opt. Express., 21(21), p.25553-25564, 2013.
    32. J. L. Deng, C. H. Zhou, X. N. Yan, C. L. Wei and Y. C. Lu, “Research on a grating interferometer with high optical subdivision based on quasi-Littrow configuration,” Proc. SPIE, 10022, p.1002213, 2016.
    33. C. C. Hus, H. Chen, C. W. Chiang and Y. W. Chang, “Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry for displacement measurement” Opt. Express., 25(24), pp.30189-30202, 2017.
    34. W. Gao, “Precision nanometrology (13thed),” Germany: Springer, 2010.
    35. W. Gao, S. Dejima, and S. Kiyono, “A dual-mode surface encoder for position measurement,” Sens. Actuator A, 117(1), pp.95-102, 2005.
    36. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. Manuf. Technol., 64(2), pp.773-796, 2015.
    37. 盧洺霈,「反射式準共光程外差光柵干涉儀應用於長行程精密定位技術之研究」,國立中央大學,碩士論文,2009。
    38. 潘思汶,「六自由度準共光程雷射干涉儀之開發」,國立台灣科技大學,碩士論文,2014。
    39. 陳應誠,「電光晶體調制外差式干涉儀與其非線性誤差之消減」,國立清華大學,碩士論文,1994。

    QR CODE