簡易檢索 / 詳目顯示

研究生: 蔡盛宇
Sheng-yu Tsai
論文名稱: 400~1100nm凹面光柵高光譜儀光學系統之設計與驗證
Design and Verification of a Visible-and-Near Infrared Hyperspectral Imaging Optical System Based on a Concave Grating
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 123
中文關鍵詞: 高光譜儀成像光譜儀光譜儀繞射光柵斑點像差光譜解析度
外文關鍵詞: Hyperspectral imaging, Image spectrometer, Spectrometer, Diffraction grating, Spot diagram, Aberration, Spectral resolution
相關次數: 點閱:445下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為400~1100 nm凹面光柵高光譜儀光學系統之設計與驗證。以二維曲面光柵為主進行凹面光柵高光譜儀光學系統之設計,考慮五種不同光柵的設計參數,其中有出入射臂長與夾角、光源發散角、反射鏡安裝位置考量、影像偵測器尺寸規格、光柵元件尺寸。經過分析後,僅有一種符合空間上配置的需求。
    實驗平台出圖加工完成後,首先進行高光譜儀光學系統的光軸校準。本研究以紅光(635 nm)及綠光(532 nm)雷射架設於五軸位移平台上進行光軸校準,將兩道不同波長之雷射併光進入分光鏡中心、狹縫中心以及光柵中心,確認實驗平台與模擬為同一光軸。接著以四道不同波長的單模光纖雷射(520 nm、635 nm、660 nm、673.5 nm)進行繞射效率、半高全寬斑點大小及光譜解析度之量測。由鋁合金5083直接加工出光柵溝槽。經實驗量測後,光柵鍍膜前一階繞射效率為60%。光柵鍍上50 nm的鋁以及170 nm的二氧化矽後,一階繞射效率提升至70%,鍍膜前後整體繞射效率提升了10%。
    本研究使用Sony α99單眼相機作為記錄成像斑點大小的影像偵測器,將拍攝擷取的數據,利用光譜分析軟體(Tracker),分析在不同波長及狹縫高度的條件下,水平及垂直之成像分布。經本研究實驗後,水平半高全寬斑點大小(FWHM)約為 230~340 µm。將理論像差(約50 µm)、單模光纖直徑、雷射光源頻寬以及繞射極限等列入計算後,得出斑點大小約100 µm。比較量測值與理論值發現主要差異來自於加工誤差。若將製成誤差因素一併計算,其量測結果與理論值誤差值小於1像素內。垂直半高全寬斑點大小約為30~150 µm,垂直半高全寬斑點大小則落在±60 µm之加工誤差容許範圍內。通過數據分析計算,光譜解析度範圍為4~7 nm,與計算的結果一致。
    本研究已完成四波長繞射效率與斑點大小之量測,並且建立完整的設計開發、光軸校準、效率量測、記錄影像斑點以及光譜解析度分析方法之流程。


    A hyperspectral imaging (HSI) optical system is designed and constructed based on an aberration-corrected concave grating. The designed spectral range is from 400 nm to 1100 nm. Five design layouts are generated based on different spatial parameters. It includes the incident and exit arm lengths and angles, divergence of the incident beam, size of the detector module, reflection mirror (in-between entrance slit and the grating) and size of the grating block. After the analysis on the mechanical interferences, only one design fulfills the requirement.
    The optical axis alignment system consists of one red laser (635 nm), one green laser (532 nm) and a beam combiner (beam splitter). Each component is mounted on a 5-axis positioning stage (2θ-XYZ) to ensure co-linearity with the HSI optical axis. The alignment system aligns the entrance slit, the reflection mirror, the grating and the detector. Single mode fiber lasers (core diameter of 9 um) of four wavelengths, 520 nm, 635 nm, 660 nm and 673.5 nm, are coupled using optical fiber coupler as a single input of the HSI optical system. Based on this arrangement, the diffraction efficiencies of different orders are measured. The grating is directly machined from an aluminum alloy block (5083). The 1st order efficiency is about 60% before the coating of high reflective material. The efficiency reaches about 70% after the coating, which consists of a 50nm thickness of aluminum and a 170 nm thickness of SiO2.
    A Sony α99 camera is used as the image recording module to acquire the spot size of the images. The image data is analyzed using a profile analyzing software Tracker. The vertical and horizontal profiles are obtained for different input conditions, i.e., wavelengths and slit heights. The measurement shows that the horizontal Full-Width-at-Half-Maximal (FWHM) spot size is about 230 µm to 340 µm. The calculated aberration-related spot size is about 50 µm. If the core diameter of the fiber, laser spectral band width, diffraction-limited spot size are taken into account, the total theoretical spot size is about 100 µm. The difference between these two values comes from the setting error of the machining system. In horizontal, if setting error is considered, the differences between the calculated and the measured spot sizes are within one pixel, which is 6 µm. The measured spot size in the vertical is about 30 µm to 150 µm. This is consistent with the results if the machining setting error is taken into account. By analyzing the data, the spectral resolution of the system is about 4 nm to 7 nm, which is consistent with the results of the calculation.
    In this study, we establish (1) a design flow of a concave-grating HSI optical system; (2) an optical axis alignment procedure; (3) the efficiency and spot size measurement methodology; and (4) spectral resolution analysis model.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 序論 1 1.1研究背景 1 1.2研究目的 2 1.3本文架構 3 第二章 研究流程 4 第三章 高光譜儀光學系統開發 5 3.1光柵光路徑設計 5 3.2高光譜儀光學系統實驗平台設計 15 3.3完整平台規劃 20 3.4加工圖 23 3.5實體圖 25 3.6高光譜儀光學系統元件規格 28 第四章 量測平台架構 29 4.1紅光(635 nm)及綠光(532 nm)雷射架構與校準 29 4.2四波長單模光纖雷射架構 39 第五章 凹面光柵數據分析原理 43 5.1 量測的半高全寬斑點大小之數據分析流程 45 5.2 量測的半高全寬斑點大小之數據分析原理 46 5.2.1光柵方程式 46 5.2.2出射波長角度差 47 5.2.3斑點間的距離 47 5.2.4水平與垂直方向理論像差形成的斑點大小 48 5.2.5半高全寬斑點大小與光譜解析度之間換算公式 48 5.2.6雷射形成的半高全寬斑點大小 49 5.2.7光纖直徑 49 5.2.8放大率 50 5.2.9光纖形成的水平與垂直半高全寬斑點大小 50 5.2.10出射聚焦夾角 51 5.2.11繞射極限形成的水平與垂直半高全寬斑點大小 52 5.2.12水平半高全寬斑點大小理論值 52 5.2.13垂直半高全寬斑點大小理論值 53 5.2.14 Slope Error形成的夾角 53 5.2.15 Slope Error 55 5.2.16加工精準度 56 5.2.17 Slope Error形成的水平與垂直半高全寬斑點大小 56 5.2.18水平半高全寬斑點大小總和 57 5.2.19垂直半高全寬斑點大小總和 57 5.3量測的光譜解析度之數據分析流程 58 5.4量測的光譜解析度之數據分析原理 58 5.4.1系統光譜解析度 58 5.4.2 Slope Error形成的光譜解析度 59 5.4.3量測的理論光譜解析度 60 5.5理論的數據分析流程圖 60 5.6理論的半高全寬斑點大小與光譜解析度 61 5.6.1理論的Slope Error形成的光譜解析度 61 5.6.2理論的Slope Error形成的半高全寬斑點大小 61 5.6.3理論的半高全寬斑點大小總和 62 5.7量測值與理論值之間的誤差計算 62 5.7.1斑點大小 62 5.7.2半高全寬斑點大小量測值與理論值的誤差百分比 62 5.7.3光譜解析度量測與理論誤差值 63 5.7.4像素大小 63 5.7.5量測的半高全寬斑點大小所需的像素大小 63 5.7.6理論的半高全寬斑點大小所需的像素大小 63 5.7.7量測與理論的像素誤差值 63 第六章 結果與數據分析 64 6.1繞射效率量測 64 6.1.1光柵鍍膜前效率量測 64 6.1.2光柵鍍膜後效率量測 68 6.2斑點大小量測 74 6.3解析度分析 93 6.4綜合資料結果 94 第七章 結論 101 參考文獻 103

    [1]“Airborne Hyperspectral Remote Sensing Systems,” http://uregina.ca/piwowarj/Satellites/Hyperspectral.html
    [2]G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical Optics, Vol. 19(1), 010901 (2014).
    [3]“Tracker (video analysis and modeling tool, Open Source Physics),” https://www.cabrillo.edu/~dbrown/tracker/
    [4]“Product data sheet Aluminium 5083 Aluminium alloy,” http://www.docstoc.com/docs/32838434/PRODUCT-DATA-SHEET-Aluminium-5083-Aluminium-Alloys
    [5]E. Hecht, Optics 4th Ed, Addison Wesley, San Francisco, p. 478 (2002).
    [6]M. Bertolo, SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS, the abdus salam international centre for theoretical physics, Italy, p. 52 (2004).
    [7]E. Hecht, Optics 4th Ed, Addison Wesley, San Francisco, pp. 469-472 (2002).
    [8]P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, pp. 286-310 (2013).
    [9]K. Nakamoto, K. Sugiyama, Y. Takeuchi, “Tool setting of error compensation for multi-axis control ultra-precision machining,” Proceedings of the 14th euspen International Conference, Dubrovnik, pp. 44-46 (2014).

    無法下載圖示 全文公開日期 2020/04/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE