簡易檢索 / 詳目顯示

研究生: 蔡漢琳
Han-Lin Tsai
論文名稱: 基於機器學習優化之粒子群演算法於智慧照明之應用
An Enhanced Particle Swarm Optimization with Machine Learning for Smart Lighting Applications
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 智慧照明自動調光系統物聯網類神經網路粒子群演算法高效節能
外文關鍵詞: Smart lighting, Automatic dimming system, IoT, Neural Network, Particle Swarm Optimization, Energy efficiency
相關次數: 點閱:351下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著 LED 燈具的普及,智慧照明系統的引入已經成為必然。此
    類系統利用先進的感應技術、調光控制、物聯網和自動化等功能,
    根據實際需求智能調整照明亮度以實現節能效果。智慧照明系統的
    目的是減少能源消耗和電力浪費,降低能源成本並減少對環境的不
    良影響。它能夠充分利用 LED 燈具的優勢,最大程度地提升節能效
    益。
    本研究旨在建立一個自動調光系統,透過配合日光和物聯網技
    術,確保照明條件符合各種工作場所需求。在此過程中,本文採用
    了前饋神經網路模型加速粒子群演算法的收斂以實現個別調光,從
    而達到最佳的照明效果。本系統模擬具有三個照度觀測點和八顆
    LED 燈泡的場地進行實驗,研究結果表明,透過本系統最高能夠節
    省 43.22 %的功耗。同時,相較於傳統粒子群演算法,所提結合前饋
    神經網路之粒子群演算法在收斂速度可改善 43.58 %,精準度部分則
    可增加 3.21 %。


    With the widespread adoption of LED lighting, the introduction of
    smart lighting systems has become inevitable. These systems utilize
    advanced sensing technology, dimming controls, internet of things (IoT),
    and automation technology to intelligently adjust lighting brightness based
    on actual requirements, achieving energy-saving effects. The purpose of
    smart lighting systems is to reduce energy consumption, minimize power
    waste, lower energy costs, and mitigate adverse environmental impacts.
    These systems leverage the advantages of LED lighting to maximize
    energy efficiency.
    This study aims to establish an automatic dimming system that ensures
    lighting conditions meet various operational requirements through the
    integration of daylight and IoT technologies. In this process, a Feedforward
    Neural Network(FFNN) model is incorporated to accelerate the
    convergence of Particle Swarm Optimization(PSO) for individual
    dimming, thereby achieving optimal lighting effects. The system is
    simulated in a venue with three illuminance measuring points and eight
    LED bulbs. The research findings demonstrate that the system can achieve
    a maximum power saving of 43.22 %. Moreover, compared to traditional
    PSO, the proposed FFNN-integrated PSO method exhibits improved
    convergence speed by 43.58 % and enhanced accuracy by 3.21 %.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 1.3文獻回顧 5 1.4論文架構 7 第二章 系統架構與資料前處理 8 2.1網路爬蟲端介紹 9 2.2日射量轉照度方式介紹 13 2.2.1全天空日射量與照度之關係 13 2.2.2量測過程及儀器介紹 15 2.2.3擬合過程介紹 17 2.3點燈端 22 2.3.1硬體介紹 22 2.3.2軟體介紹 24 第三章 PSO演算法與機器學習 26 3.1 PSO演算法介紹 26 3.1.1運作原理 27 3.1.2運算流程 28 3.1.3 PSO之應用 32 3.2 機器學習介紹 33 3.2.1 FFNN介紹 34 3.2.2特徵擷取介紹 37 3.2.3 LMBP算法介紹 39 3.2.4 FFNN參數設定 42 第四章 實驗結果與探討 44 4.1實驗場地 44 4.2調光矩陣量測過程 46 4.2.1調光矩陣測試結果 51 4.3 PSO演算法 54 4.3.1 PSO演算法結果 55 4.4 FFNN模型訓練 58 4.4.1 FFNN模型測試結果 64 4.5 FFNN+PSO演算法 67 4.5.1 FFNN+PSO演算法結果 68 4.6 結果與比較 71 第五章 總結和未來研究方向 76 5.1 總結 76 5.2 未來研究方向 77 參考文獻 80

    [1] I. E. Agency, "Net Zero by 2050 A Roadmap for the Global Energy Sector," 2021. [Online]. Available: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.
    [2] 工業技術研究院, "2021家庭用電資訊百科," 2022. [Online]. Available: https://www.energypark.org.tw/save-energy-resource/books.html?task=convert.getpdf&id=78&filename=123.pdf.
    [3] S. Yoo, J. Kim, C.-Y. Jang, and H. Jeong, "A sensor-less LED dimming system based on daylight harvesting with BIPV systems," Optics Express, vol. 22, no. 101, pp. A132-A143, 2014.
    [4] 工業技術研究院,李麗玲, "LED智慧照明技術及應用," 2021. [Online]. Available: https://www.taesco.org.tw/wp-content/uploads/2022/04/LED%E6%99%BA%E6%85%A7%E7%85%A7%E6%98%8E%E6%8A%80%E8%A1%93%E5%8F%8A%E6%87%89%E7%94%A8.pdf.
    [5] 經濟部能源局, "室內照明燈具節能標章能源效率基準與標示方法修正規定," 2020. [Online]. Available: https://www.energylabel.org.tw/applying/efficiency/upt.aspx?cid=27&Con=1&uid=0&year=&month=&day=&key=&subID=217.
    [6] S. H. Lee and J. K. Kwon, "Distributed dimming control for LED lighting," Optics express, vol. 21, no. 106, pp. A917-A932, 2013.
    [7] X. Wang and J.-P. Linnartz, "Intelligent illuminance control in a dimmable LED lighting system," Lighting Research & Technology, vol. 49, no. 5, pp. 603-617, 2017.
    [8] A. Cziker, M. Chindris, and A. Miron, "Implementation of fuzzy logic in daylighting control," in 2007 11th International Conference on Intelligent Engineering Systems, 2007: IEEE, pp. 195-200.
    [9] M. Fakhari, R. Fayaz, and R. Lollini, "The Impact of Evaluated Daylight to the Total Light Ratio on the Comfort Level in Office Buildings," Buildings, vol. 12, no. 12, p. 2161, 2022.
    [10] M. Petkovic et al., "Smart dimmable LED lighting systems," Sensors, vol. 22, no. 21, p. 8523, 2022.
    [11] C.-H. Kim, K.-H. Lee, and K.-S. Kim, "Evaluation of Illuminance Measurement Data through Integrated Automated Blinds and LED Dimming Controls in a Full-Scale Mock-up," Energies, vol. 13, no. 12, p. 3238, 2020.
    [12] R. Mistrick, "Analysis of daylight responsive dimming system performance," Building and Environment, vol. 34, no. 3, pp. 231-243, 1998.
    [13] A. Choi and M. Sung, "Development of a daylight responsive dimming system and preliminary evaluation of system performance," Building and environment, vol. 35, no. 7, pp. 663-676, 2000.
    [14] I.-T. Kim, Y.-S. Kim, H. Nam, and T. Hwang, "Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System," Sustainability, vol. 10, no. 11, p. 4087, 2018.
    [15] I.-T. Kim, Y.-S. Kim, M. Cho, H. Nam, A. Choi, and T. Hwang, "High-performance accuracy of daylight-responsive dimming systems with illuminance by distant luminaires for energy-saving buildings," Energies, vol. 12, no. 4, p. 731, 2019.
    [16] W. Si, H. Ogai, T. Li, and K. Hirai, "A novel energy saving system for office lighting control by using RBFNN and PSO," in IEEE 2013 Tencon-Spring, 2013: IEEE, pp. 347-351.
    [17] W. Si, H. Ogai, K. Hirai, H. Takahashi, and M. Ogawa, "An improved PSO method for energy saving system of office lighting," in SICE Annual Conference 2011, 2011: IEEE, pp. 1533-1536.
    [18] L. Mu, Z. Wang, D. Wu, L. Zhao, and H. Yin, "Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model," Fuel, vol. 318, p. 123644, 2022.
    [19] 中央氣象局, "觀測資料查詢系統." [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/.
    [20] 中央氣象局, "觀測資料查詢系統說明." [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/downloads/Readme.pdf.
    [21] 郭俊聲, "照度與日射量轉換模式探討." [Online]. Available: https://tpl.ncl.edu.tw/NclService/pdfdownload?filePath=lV8OirTfsslWcCxIpLbUfhqD9W-i3vsGsh2y0wCRuAm5Z5ALYuM6rGCiokqpURMz&imgType=Bn5sH4BGpJw=&key=uEUjXERbGu3M53l7H4cJIq9L8VeQe7jhGsf26XH3kW4eVVU9OyINO4qBZJhLTxWd&xmlId=0005342111.
    [22] UPRtek, "MK350S Premium," 2020. [Online]. Available: https://www.uprtek.com/downloads/MK350S_Premium_Specification_TCH_202007.pdf.
    [23] IKEA, "TRÅDFRI Led智慧燈泡e27 1055流明." [Online]. Available: https://www.ikea.com.tw/zh/products/light-sources-and-smart-lighting/smart-lighting/tradfri-art-20489749.
    [24] IKEA, "TRÅDFRI 閘道器." [Online]. Available: https://www.ikea.com.tw/zh/products/connectivity-and-control/connectivity-and-control/tradfri-art-30445260.
    [25] R. P. Foundation, "Raspberry Pi 4 Model B." [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
    [26] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-1948.
    [27] S. Agatonovic-Kustrin and R. Beresford, "Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research," Journal of pharmaceutical and biomedical analysis, vol. 22, no. 5, pp. 717-727, 2000.
    [28] C. Lv et al., "Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system," IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3436-3446, 2017.

    [29] H. Yonaba, F. Anctil, and V. Fortin, "Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting," Journal of hydrologic engineering, vol. 15, no. 4, pp. 275-283, 2010.
    [30] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.
    [31] MATLAB, "LASSO." [Online]. Available: https://www.mathworks.com/help/stats/lasso.html.
    [32] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint arXiv:1609.04747, 2016.
    [33] A. Ranganathan, "The levenberg-marquardt algorithm," Tutoral on LM algorithm, vol. 11, no. 1, pp. 101-110, 2004.
    [34] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE transactions on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.
    [35] D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431-441, 1963.
    [36] 中華民國經濟部, "CNS12112 Z1044照度標準." [Online]. Available: https://www.prodigital.com.tw/DOC/CNS12112.pdf.

    QR CODE