簡易檢索 / 詳目顯示

研究生: 劉雲竹
Kelvin Liusiani
論文名稱: 使用虛擬模擬數據微調骨幹神經網路應用於自動駕駛車輛之研究
Fine-tuning Backbone Neural Networks using Carla Simulation Data for Autonomous Driving
指導教授: 陳郁堂
Yie-Tarng Chen
方文賢
Wen-Hsien Fang
口試委員: 林銘波
Ming-Bo Lin
吳晉賢
Chin-Hsien Wu
陳省隆
Hsing-Lung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 62
中文關鍵詞: 自動駕駛汽車Openpilot適 配器模塊Carla模擬器多任務學習
外文關鍵詞: Autonomous Driving Car, Openpilot, Adapter Module, Carla Simulator, Multi-Task Learning
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管Openpilot在現實世界中成功部署並支援超過250種汽車型號,但它在某些情況下面臨挑戰,如準確檢測自行車和行人、在彎曲道路上執行高速機動以及應對突然變道。此外,它在夜間條件下難以檢測到前車。儘管Openpilot是一個開源項目,但他們仍然保持其訓練代碼私有,並僅公開了他們使用的數據集的一小部分,即Comma2K19。 OP-Deepdive展示了一種使用端到端方法訓練類似Openpilot的模型的方法。
    然而,由於數據集的限制,他們從頭開始訓練模型並未包含前車預測。為了應對這些挑戰,我們提出了一種高效的方法來訓練Openpilot模型,Supercombo。我們提出了一個新穎的適配器模塊來微調Supercombo,以保留Openpilot使用的全面真實世界數據集訓練的高效骨幹。此外,我們還引入了一個從Carla模擬器中收集的新數據集,覆蓋各種行駛情境和天氣條件。實驗結果表明,我們的方法在軌跡預測和前車預測方面實現了頂尖的性能,而計算資源(FLOPs)僅略微增加了1.9%


    Despite its successful real-world deployment and support for over 250 car
    models, Openpilot faces challenges in certain conditions, such as accurately detecting bicycles and pedestrians, executing high-speed maneuvers on curved roads,
    and responding to sudden vehicle cut-ins. Additionally, it struggles to detect leading vehicles during nighttime conditions. Although Openpilot is an open-source
    project, they still keep their training code private and only publish a small portion of the dataset they use, namely Comma2K19. OP-Deepdive has showcased
    an approach to training models similar to Openpilot using an end-to-end method.
    However, they trained the model from scratch and did not incorporate lead prediction due to dataset limitations.
    To address these challenges, we propose an efficient approach to train the
    Openpilot model, Supercombo. We propose a novel adapter module for finetuning Supercombo, preserving the well-performing backbone trained on the comprehensive real-world dataset collected by Openpilot. Furthermore, we introduce
    a new dataset from the Carla simulator using Carla-Roach, covering diverse driving scenarios and weather conditions. Experimental results demonstrate that
    our approach achieves state-of-the-art performance in trajectory prediction and
    lead prediction, with a minimal increase of only 1.9% in computational resources
    (FLOPs).

    摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Supercombo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Openpilot Deepdive . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Parameter Efficient Transfer Learning . . . . . . . . . . . . . . . . 7 2.4 Conv-Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Convpass Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Overall Model Architecture . . . . . . . . . . . . . . . . . . . . . 11 3.2 Proposed Adapter Module . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 Adapter in Supercombo . . . . . . . . . . . . . . . . . . . 12 3.2.2 ConvPass Adapter for CNN . . . . . . . . . . . . . . . . . 13 3.2.3 Our Proposed Adapter: ConvNeXt-like Bottleneck Module Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Plan Loss Function . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Lead Loss Function . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Desire Loss Function . . . . . . . . . . . . . . . . . . . . . 18 4 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . 19 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.1 Plan Trajectory Evaluation Result . . . . . . . . . . . . . 23 4.3.2 Lead Prediction Evaluation Result . . . . . . . . . . . . . 25 4.3.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.4 Model Performance Evaluation Result . . . . . . . . . . . 31 4.4 Testing Result and Analysis Successful . . . . . . . . . . . . . . . 32 4.4.1 Trajectory Prediction on Curved Road Conditions . . . . . 32 4.4.2 Trajectory Prediction on Lane-Changing Conditions . . . . 34 4.4.3 Lead Prediction on Different Conditions . . . . . . . . . . 36 4.4.4 Lead Prediction on Motorcycle/Bicycle . . . . . . . . . . . 39 4.4.5 Lead Prediction on Vehicle Crossing . . . . . . . . . . . . 41 4.4.6 Lead Prediction Failure . . . . . . . . . . . . . . . . . . . . 43 5 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . 46 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] H. Chen, R. Tao, H. Zhang, Y. Wang, W. Ye, J. Wang, G. Hu, and M. Savvides, “Conv-adapter: Exploring parameter efficient transfer learning for
    convnets,” arXiv preprint arXiv:2208.07463, 2022.
    [2] Tesla, “Tesla Autopilot.” https://www.tesla.com/. Accessed: 7 1, 2023.
    [3] Volvo, “Volvo.” https://www.volvoautonomoussolutions.com/. Accessed: 7 1, 2023.
    [4] Waymo, “Waymo.” https://waymo.com/. Accessed: 7 1, 2023.
    [5] Cruise, “Cruise.” https://getcruise.com/. Accessed: 7 1, 2023.
    [6] Comma AI, “Openpilot.” https://github.com/commaai/openpilot, 2017.
    Accessed: 7 1, 2023.
    [7] L. Chen, T. Tang, Z. Cai, Y. Li, P. Wu, H. Li, J. Shi, J. Yan, and Y. Qiao,
    “Level 2 autonomous driving on a single device: Diving into the devils of
    openpilot,” arXiv preprint arXiv:2206.08176, 2022.
    [8] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
    A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning for nlp,” in International Conference on Machine Learning,
    pp. 2790–2799, PMLR, 2019.
    [9] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
    and W. Chen, “LoRA: Low-rank adaptation of large language models,” in
    International Conference on Learning Representations, 2022.
    [10] S. Jie and Z.-H. Deng, “Convolutional bypasses are better vision transformer
    adapters,” arXiv preprint arXiv:2207.07039, 2022.
    [11] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on computer
    vision and pattern recognition, pp. 11976–11986, 2022.
    [12] J. Ren, M. Zhang, C. Yu, and Z. Liu, “Balanced mse for imbalanced visual regression,” in Proceedings of the IEEE/CVF Conference on Computer
    Vision and Pattern Recognition, pp. 7926–7935, 2022.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE