簡易檢索 / 詳目顯示

研究生: 賴弘恩
Hung-En Lai
論文名稱: 儲氫合金鈦-釩-錳及鈦-鉻-錳之三元相圖
Ternary Phase Diagram of Hydrogen Storage Alloys:Ti-V-Mn and Ti-Cr-Mn
指導教授: 李嘉平
Chiapyng Lee
顏怡文
Yee-wen Yen
口試委員: 高振宏
C. Robert Kao
黃孟槺
Meng-Kuang Huang
吳子嘉
Albert T. Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 儲氫合金體心立方萊維氏相鈦系燃料電池平衡相圖
外文關鍵詞: hydrogen storage alloys, body center cubic, Ti-based
相關次數: 點閱:219下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對Ti-Cr-Mn及Ti-V-Mn儲氫合金,以實驗方法探討相平衡,以提供氫能源產業在儲氫容研究時的參考。在相關文獻中,Ti、V、Cr、Mn四種元素形成的儲氫合金皆具有相當良好的儲氫容,而成為此次研究的主題。
Ti、V、Cr、Mn四種元素熔點皆高於1200℃,因此需要使用電弧熔煉爐(Arc melter)進行樣品製備。隨後將密封好樣品置放於900℃退火五週,使達相平衡。之後利用SEM和EPMA進行微結構觀測,及利用WDS進行成分分析。利用XRD測定樣品粉末分析相結構與晶格常數。
實驗中並無發現三元化合物的存在。所有 BCC結構固溶相,如(β-Ti)、(V)、(Cr)、(Mn)對第三金屬元素均有相當大的溶解度。甚至在Ti-V-Mn相圖中,(β-Ti)與(V)形成一範圍甚大的連續固溶相區域。具高速活化與高儲氫容的Laves相結構,在兩個三元相圖中均對第三金屬元素有相當大的溶解度。
尤其Ti-Cr-Mn三元中,TiMn2與β-TiCr2更是形成一連續單相。本研究的相圖中,以Laves與(β-Ti, V) 最易於與其它生成相形成三元相平衡。因此可發現相對其它相結構,Laves與(β-Ti, V)為相圖中最容易穩定存在、最為穩定的生成相。


In this study, the phase equilibrium of hydrogen storage alloys Ti-Cr-Mn and Ti-V-Mn, have been studied by experimental method. The relevant studies reported that the hydrogen storage alloys formed by Ti, V, Cr, and Mn metals have a very well hydrogen storage capacity. The phase diagrams of these metal systems were investigated in this study.
The metals, Ti, V, Cr, and Mn, have a melting point higher than 1200℃. Therefore, arc-melter was utilized to prepare these samples. Then the samples were annealed at 900℃ for 5 weeks to reach equilibrium. Afterward, the microstructures were observed by SEM and EPMA, and the composition was analyzed by WDS. Samples in powder were analyzed by X-ray diffractometer for studying the crystal structures and the lattice parameters.
In this study, we did not discover any ternary compounds. All of solid solutions, like (β-Ti), (V), (Cr), (Mn), with BCC structures have a large solubility. Furthermore, (β-Ti) and (V) formed a wide-range continuous solid solutions in Ti-V-Mn phase diagram. The Laves phase has rapid hydrogen absorption-desorption rate and high storage capacity with large solubility as well.
Furthermore, TiMn2 and β-TiCr2 formed a single continuous phase in the phase diagram of Ti-Cr-Mn. In our phase diagram, the Laves phase and (β-Ti, V) phase formed the largest number of ternary equilibrium with other phases. Therefore, these phases are the most easily exist and stable ones in Ti-Cr-Mn and Ti-V-Mn phase diagrams compared to the other phases.

摘要 I 英文摘要 II 致 謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 7 2-1 燃料電池簡介 7 2-2 儲氫合金簡介 8 2-2.1 P-C-T圖分析研究 8 2-2.2 儲氫合金種類 10 2-2.3 各種新型鈦系合金 15 2-3 相平衡圖 18 2-4 Ti、V、Cr、Mn相圖系統 22 2-4.1 Ti-V二元系統 22 2-4.2 Ti-Cr二元系統 22 2-4.3 Ti-Mn二元系統 22 2-4.4 Cr-Mn二元系統 23 2-4.5 V-Mn二元系統 23 2-4.6 Ti-Cr-Mn與Ti-V-Mn三元系統 23 第三章 實驗方法 27 3-1 鈦-鉻-錳及鈦-釩-錳三元相圖製作 27 3-1.1 三元相圖製作 27 3-1.2 合金製備及熱處理 27 3-1.3 金相與X光結構繞射分析 28 3-2 實驗藥品及儀器 31 3-2.1 實驗藥品 31 3-2.2 合金製備、觀測與分析儀器 31 第四章 結果與討論 34 4-1 鈦-鉻-錳三元平衡相圖 34 4-2 鈦-釩-錳三元平衡相圖 61 第五章 結論 80 5-1 鈦-鉻-錳三元平衡相圖 80 5-2 鈦-釩-錳三元平衡相圖 80 5-3 三元相圖研究之總結 80 參考文獻 82 附錄一 Narrow Scan Ti(Cr1-x, Mnx)2 of Ti-Cr-Mn 86 附錄二 相關儲氫合金研究組成 87

[1] 蔡嘉峯,鄭錕燦,“質子交換膜燃料電池氣體擴散層氧氣質傳之研究”,大葉大學機械工程研究所碩士學位論文,2004。
[2] 黃鎮江,燃料電池(修訂版),全華科技圖書股份有限公司,2005。
[3] 工業材料研究所, “小型二次電池市場與技術專輯”,1996。
[4] D. Linden, Handbook of Batteries, chapter 33, McGRAW-HILL, 1995 .
[5] H. A. Liebhafsky and E. J. Cairns, “Fuel Cells and Fuel Batteries”, p.18, John Wiley & Sons, Inc., New York, 1968.
[6] 李書鋒,鄭錕燦,“質子交換膜燃料電池性能之理論探討”,大葉大學車輛工程學系碩士學位論文,2004。
[7] 黃瑞雄,顏溪成,“電化學”,科學發展,359期,p.26 (2002)。
[8] T. Gramham, Phil. Trans. Roy. Soc., London, 156(1866)399.
[9] D. G. Ivey and D. O. Northwood, “Review storing energy in metal hydride: a review of physical metallurgy”, J. Material Science, vol. 18, pp.321-347, 1983.
[10] J. J. Reilly, R. H. Wiswall, Inorg. Chem. , 13 (1974) 218.
[11] Y. Osumi, Hydrogen Storage Alloy — Its Physical Property and Application, Agune Technical Center, Tokyo, Japan, 1993.
[12] Jong-Man Park, Jal-Young Lee, J. Less-Common Met. , 167 (1991) 245.
[13] 廖世傑,洪松慰,“儲氫合金”,工業材料雜誌,190期,p.147 (2002)。
[14] J. H. N. van Vucht, F. A. Kuijpers, and H. C. A. M. Bruning, Philips Res. Repts. , 25 (1970) 133.
[15] D. Y. Yan, G. Sndrock, S. Suda, J. Alloys and Compounds, 216 (1994) 56.
[16] H. Zijlstra, and F. F. Westendorp, Sol. State Comm. , 7 (1969) 857.
[17] J. H. N. van Vucht, F. A. Kuijpers, and H. C. A. M. Bruning, Philips Res. Repts. , 25 (1970) 133.
[18] F. A. Kuijpers, Philips Res. Suppl. , 28 (1973) 1.
[19] J.J. Reilly, R.H. Wiswall Jr., Inorg. Chem. 7 (1968) 2254.
[20] S. Ono, E. Akiba, K. Imanari, in: Proc. Miami Int. Symp. on Metal–Hydrogen Systems, 13–15 April 1981, 1982, p.467.
[21] Y. Ishido, N. Nishimiya, A. Suzuki, J. Electrochem. Soc. Jpn. 45 (1977) 52.
[22] D.G. Ivey, R.I. Chittim, K.J. Chittim, D.O. Northwood, J. Mater. Energy Syst. 3 (3) (1981) 3.
[23] Y. Osumi, H. Suzuki, A. Kato, M. Nakane, and Y. Miyake, J. Less-Common Met. , 24(1978)125.
[24] E. Akiba, H. Iba, “hydrogen absorption by Laves phase related BCC solid solution”, Intermetallics 6 (1998) 461-470.
[25] G.G. Libowitz, A.J. Maeland, Mater. Sci. Forum 31 (1988) 177.
[26] E. Akiba, JIM Seminar-Secondary Battery with High Performance and Its Related Material (1996) 1.
[27] S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “The Hydrogen Storage Characteristics of Ti-Cr-V Alloys”, J. Alloys and Compounds 288(1999) 294-298.
[28] S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “Hydrogen Storage Characteristics of Ti-Zr-Cr-V Alloys”, J. Alloys and Compounds 289(1999) 244-250.
[29] T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, “Protium absorption properties of Ti–V–Cr–Mn alloys with a b.c.c. structure”, Journal of Alloys and Compounds 330–332 (2002) 522–525.
[30] T. Mouri, H. Iba, “Hydrogen-absorbing alloys with a large capacity for a new energy carrier”, Materials Science and Engineering A329–331 (2002) 346–350.
[31] X.B. Yu, Z. Wu, B.J. Xia, and N.X. Xu, “Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys”, Journal of Alloys and Compounds 372 (2004) 272–277.
[32] J.L. Murray (1989), in “ASM Handbook vol.3 Alloy Phase Diagrams”, ed. by Hugh baker, ASM International, Materials Park, Ohio, p.2•379.
[33] J.L. Murray (1987), in “ASM Handbook vol.3 Alloy Phase Diagrams”, ed. by Hugh baker, ASM International, Materials Park, Ohio, p.2•161.
[34] J.L. Murray (1987), in “ASM Handbook vol.3 Alloy Phase Diagrams”, ed. by Hugh baker, ASM International, Materials Park, Ohio, p.2•290.
[35] M. Venkatraman and J.P. Neumann (1986), in “ASM Handbook vol.3 Alloy Phase Diagrams”, ed. by Hugh baker, ASM International, Materials Park, Ohio, p. 2•154.
[36] H. Okamoto (1992), in “ASM Handbook vol.3 Alloy Phase Diagrams”, ed. by Hugh baker, ASM International, Materials Park, Ohio, 2•290.
[37] S.K. Gupta and K.P. Gupta, “Phase Equilibria at the high Mn end of the Mn-Ti-V and Mn-Ti-Cr Systems”, Transactions of the Indian Institute of Metals, 29, 36-41 (1976).
[38] S. Semboshi, N. Masahashi and S. Hanada, J. Alloys Comp. 352(2003), p.210.
[39] S. Semboshi, N. Masahashi and S. Hanada, Acta Materialia, 49(2001), pp.927-935.
[40] P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, 1995.

QR CODE