簡易檢索 / 詳目顯示

研究生: 許書衡
Shu-Heng Hsu
論文名稱: 鋅-氧化鋅奈米線核殼結構之合成及其光感測器特性
Synthesis and photo-sensing properties of Zn-ZnO core-shell nanofibers
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 58
中文關鍵詞: 光偵測器鋅-氧化鋅奈米線核殼結構蕭特基接觸光響應
外文關鍵詞: Zn-ZnO core-shell.Schottky contact
相關次數: 點閱:269下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用氣相傳輸法在氧氣環境下以金屬鋅顆粒為蒸發源,製備出鋅-氧化鋅核殼結構奈米線。此核殼結構其內層鋅直徑約為53 nm,外層包覆一層厚度約7.5 nm的氧化鋅,並沿[112 ‾0]方向成長。經過熱氧化之後,鋅-氧化鋅奈米線內部的金屬鋅向外擴散成長,造成奈米線內部空洞,形成多晶之氧化鋅奈米管。以此鋅-氧化鋅核殼結構以銀及銦為電極製成金屬-半導體-金屬光電偵測元件。研究結果顯示以銦電極製成之光偵測器其最大光響應在300 nm為1.6 A/W,光電流下降時間為τ1=50 s、τ2=595 s,而以銀為電極之光偵測器其最大光響應在300 nm為12 A/W,光電流下降時間為τ1=19 s、τ2=202 s。相較於銦電極之光偵測器,以銀為電極之光偵測器具有較高之光響應及較快之光電流下降時間,歸納原因是由於銀與氧化鋅形成蕭特基接面,而銦與氧化鋅形成歐姆接面。當蕭特基接面的金屬-半導體-金屬照光時,逆向偏壓的蕭特基接面空乏區因吸收光子而產生一反向之光電壓,此光電壓使蕭特基位障下降進而使逆偏電流急遽上升而產生較高之光響應。


    Single-crystalline Zn-ZnO core-shell nanofibers have been prepared by thermal evaporation of metallic Zn in an oxygen atmosphere. The diameter of the Zn core is ~53±1.0 nm while the thickness of the outer ZnO shell is 10±1.5 nm, both are single crystalline and grow along the[112 ‾0]direction. Post-growth annealing leads to out-diffusion and oxidation of the Zn core that result in the formation of polycrystalline ZnO nanotubes. Metal-semiconductor-metal photodiodes (PDs) are fabricated by depositing In and Ag interdigitated electrodes on Zn-ZnO core-shell nanofibers. PDs fabricated utilizing In contacts exhibit a maximum responsivity of 1.6 A/W at 300 nm with a decay time of τ1=50 s andτ2=595 s. In contrast, photodiodes fabricated utilizing Ag contacts exhibit a maximum responsivity of 12 A/W at 300 nm with a decay time of τ1=19s andτ2=202 s. The improved responsivity and decay time is attributed to the formation of Schottky barrier between Ag and ZnO.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 氧化鋅簡介 3 ◆ 2.1.1 氧化鋅之晶體結構與特性 3 ◆ 2.1.2 氧化鋅之發光機制 4 2.2 氧化鋅一微奈米結構 5 ◆ 2.2.1 氧化鋅一微奈米結構簡介與應用 5 ◆ 2.2.2 大氣與真空下之光電流 7 2.3 蕭特基與MSM光偵測器原理 9 ◆ 2.3.1 蕭特基接觸之光偵測器 9 ◆ 2.3.2 金屬與半導體接觸理論 13 2.4 電極材料介紹與成長機制 17 ◆ 2.4.1 銀與銦的簡介 17 ◆ 2.4.2 氣態-固態 成長機制 (vapor-solid growth mechanism, VS) 18 第三章 實驗步驟與量測方法 21 3.1 實驗設備及流程 21 ◆ 3.1.1 氧化鋅核殼結構的製備 21 3.2 特性分析儀器 26 ◆ 3.2.1 場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM) 26 ◆ 3.2.2 能量散射光譜儀(Energy dispersive spectrometer, EDS) 27 ◆ 3.2.3 X-ray繞射(X-ray diffraction, XRD) 28 ◆ 3.2.4 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 30 ◆ 3.2.5 光電流量測 32 第四章 實驗結果與討論 35 4.1 場發射掃描式電子顯微鏡分析 (FE-SEM) 36 4.2 X-ray繞射儀分析(XRD) 38 4.3 穿透式電子顯微鏡分析 (TEM) 40 4.4 IV特性曲線量測 45 4.5 光電流量測分析 (photocurrent) 46 第五章 結論 52 參考文獻 54

    [1]Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, pp. 3654-3656, 2004.
    [2]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [3]W. K. Hong, B. J. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids. Surf. A, vol. 313-314, pp. 378-382,2008.
    [4]H. Wan, B. B. Li, and H. E. Ruda, “Influence of growth conditions on morpholopgy of ZnO nanostructure in CVD process,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1110-1115, 2010.
    [5]H. Yan, J. Hou, Z. Fu, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, S. Fu, and F. Li, “Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation,” Mater. Res. Bull., vol. 44, pp. 1954-1958, 2009.
    [6]H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A, vol. 393, pp. 80-82, 2005.
    [7]B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, No 8, pp. 1635-1637, 2003.
    [8]T. L. Chou, W. Y. Wu, and J. M. Ting, “Sputter deposited ZnO nanowires/thin film structures on glass substrate,” Thin Solid Films, vol. 518, pp. 1553-1556, 2009.
    [9]W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” App. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
    [10]L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C, vol. 113, pp. 21572-21576, 2009.
    [11]F. Yakuphanoglu, Y. Caglar, S. Ilican, and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, vol. 394, pp. 86-92, 2007.
    [12]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and device,” J. Appl. Phys., vol. 98, pp. 041301-1 - 041301-103, 2005.
    [13]C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., vol. 85, pp. 1012-1015, 2000.
    [14]A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology, vol. 18, pp. 095702-1-095702-8, 2007.
    [15]B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., vol. 148, pp. 110-113, 2001.
    [16]S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., vol. 84, pp. 2287-2294, 1998.
    [17]X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” App. Phys. Lett., vol. 78, pp. 2285-2287, 2001.
    [18]S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett., vol. 75, pp. 2761-2763, 1999.
    [19]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, pp. 7983-7990, 1996.
    [20]Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett., vol. 86, pp. 123117-1-123117-3, 2005.
    [21]J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth, and S. Mathur, “Toward a systematic understanding of photodetectors based on individual metal oxide nanowires,” J. Phys. Chem C, vol. 112, pp. 14639-14644, 2008.
    [22]H. Y. Chen, R. S. Chen, N. K. Rajan, F. C. Chang, L. C. Chen, K. H. Chen, Y. J. Yang, and M. Reed, “Size-dependent persistent photocurrent and surface band bending in m-axial GaN nanowires,” Phys. Rev. B, vol. 84, pp. 205443-1-205443-7, 2011.
    [23]G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett., vol. 99, pp. 203105-1-203105-3, 2011.
    [24]M. W. Allen, M. M. Alkaisi, and S. M. Durbin, “Metal Schottky diodes on Zn-polar and O-polar bulk ZnO,” Appl. Phys. Lett., vol. 89, pp. 103520-1-103520-3, 2006.
    [25]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth, vol. 225, pp. 110-113, 2001.
    [26]H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, “Schottky diode with Ag on [112 ‾0] epitaxial ZnO film,” Appl. Phys. Lett., vol. 80, pp. 2132-2134, 2002.
    [27]H. Frenzel, A. Lajn, M. Brandt, H. von. Wenckstern, G. Biehne, H. Hochmuth, M. Lorenz, and M. Grundmann, “ZnO metal-semiconductor field-effect transistors with Ag-Schottky gates,” Appl. Phys. Lett., vol. 92, pp. 192108-1-192108-3, 2008.
    [28]J. Bardeen, “Surface States and Rectification at a Metal Semi-Conductor Contact,” Phys. Rev. Lett., vol. 71, pp. 717-727, 1947.
    [29]F. A. Padovani and R. Stration, “Field and thermionic-field in Schottky barriers,” Solid-State Electron., vol. 9, pp. 695-707, 1966.
    [30]M. W. Allen, S. M. Durbin, and J. B. Metson, “Silver oxide Schottky contacts on n-type ZnO,” Appl. Phys. Lett., vol. 91, pp. 053512-1-053512-3, 2007.
    [31]C. Y. Chen, K. Y. Wu, Y. C. Chao, H. W. Zan, H. F. Meng, and Y. T. Tao, “Concomitant tuning of metal work function and wetting property with mixed self-assembled monolayers,” Org. Electron., vol. 12, pp. 148-153, 2011.
    [32]A. M. Alfantazi and R. R. Moskalyk, “Processing of indium: a review,” Miner. Eng., vol. 16, pp. 687-694, 2003.
    [33]X. Y. Kong, Y. Ding, and Z. L. Wang, “Metal-semiconductor Zn-ZnO core- shell nanobelts and nanotubes,” J. Phys. Chem. B, vol. 108, pp. 570-574, 2004.
    [34]W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., vol. 142, pp. 87-101, 1852.
    [35]C. Y. Liu, B. P. Zhang, Z. W. Lu, N. T. Binh, K. Wakatsuki, Y. Segawa, and R. Mu, “Fabrication and characterization of ZnO film based UV photodetector,” J. Mater Sci.: Mater. Electron., vol. 20, pp. 197-201, 2009.

    無法下載圖示 全文公開日期 2019/06/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE