簡易檢索 / 詳目顯示

研究生: 田毅翔
I-Hsiang Tien
論文名稱: 基於混合法之太陽能最大功率追蹤
A Maximum Power Point Tracking Method based on the Hybrid Approach
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 劉益華
Yi-Hua Liu
黃仲欽
Jonq-Chin Hwang
郭政謙
Cheng-Chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 太陽能發電系統最大功率追蹤部分遮蔽粒子群最佳化 法
外文關鍵詞: photovoltaic (PV) system, Maximum power point tracking(MPPT), partial shading, Particle swarm optimization(PSO)
相關次數: 點閱:493下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類面臨氣候變遷、能源、資源逐漸匱乏及環境污染日趨嚴重等
    困境,許多學者紛紛朝向綠色能源作研究,其取之不盡用之不竭的太
    陽能發電,成為近代許多學者研究的題目。然而太陽能目前轉換效率
    目前偏低,如何有效的利用這偏低的轉換效率(光能轉換為電能)則是
    本文的目的所在。
    本文以太陽能模擬機模擬出太陽能模組之特性以及三種不同的
    情況,其太陽能模組因部份遮蔽導致輸出特性曲線為多峰情況,以傳
    統之擾動觀察法為最大功率追蹤演算法無法有效找到真正的最大功
    率值。然而,以粒子群最佳化法為主之最大功率追蹤演算法雖可追蹤
    到最大功率點但所花時間過長,因此,本文提出結合擾動觀察法與粒
    子群最佳化法之混合法迅速地找尋真實之最大功率點。為驗證所提之
    混合法,本論文採用數位信號處理器TMS320F28035 實現最大功率追
    蹤控制器,電力架構則為交錯式直流直流升壓型轉換器。藉由電力架
    構中回授電壓和電流值經由類比/數位轉換器轉換後至數位信號處
    理器作運算。再搭配電流閉迴路之控制策略完成整體系統之實作。在
    模擬分析中,本文使用套裝軟體Powersim 分析整體系統在各種最大
    功率追蹤演算法以及電流控制模式,所運算出結果與硬體實測相互驗
    證。


    Driven by environmental concerns and depletion of fossil fuels,
    renewable energy resources (RERs) are becoming one of the most
    important research topics. Among these (RERs), photovoltaic (PV)
    generation systems are gaining its importance and popularity due to its
    cleanness and ease of maintenance. This thesis proposes a new maximum
    power point tracking method for a PV system, which is able to track the
    global maximum point (GMP) in a reasonably short time. Conventional
    MPPT methods such as Perturb and observe (P&O) method can only
    track the first local maximum point(LMP) and stop progressing to the
    next maximum point. MPPT methods based on particle swarm
    optimization (PSO) have been proposed to track the GMP. However, the
    problems of the PSO method are that the initial conditions of particles
    need to be chosen carefully to ensure the search space contains the GMP.
    Moreover, the time required for convergence may be very slow if the
    range of the search space is large. To overcome these shortcomings, this
    paper proposes a hybrid method, which combines P&O and PSO methods.
    Initially, the P&O method is employed to allocate the nearest local
    maximum. Then starting from that point on, the PSO method is employed
    to search for the GMP. The advantage of using the proposed hybrid
    method is that the search space for the PSO is reduced, and hence the
    time required needed for convergence can be greatly improved. The
    control algorithm has been implemented in a DSP (TMS320F28035), and
    the excellent performance of the proposed hybrid method has been
    verified experimentally by comparing against P&O and PSO methods.

    摘要............................................................................................................i Abstract .................................................................................................... ii 致謝......................................................................................................... iii 目錄......................................................................................................... iv 表目錄.................................................................................................... vii 圖目錄................................................................................................... viii 第一章 緒論.............................................................................................1 1.1 研究動機與目的........................................................................1 1.2 文獻探討....................................................................................1 1.3 系統架構及規格.......................................................................3 1.4 論文大綱...................................................................................5 第二章 直流-直流升壓型轉換器之模擬與實測...................................6 2.1 前言............................................................................................6 2.2 太陽能電池簡介.......................................................................6 2.3 太陽能電池模型.......................................................................8 2.4 直流-直流升壓型轉換器之分析與控制...................................9 2.4.1 直流-直流升壓型轉換器之原理......................................9 2.4.2 連續導通與不連續導通模式之邊界............................11 2.5 交錯式直流-直流升壓型轉換器.............................................13 v 2.5.1 交錯式直流-直流升壓型轉換器架構..........................13 2.5.2 交錯式直流-直流升壓型轉換器控制策略..................14 2.5.3 小訊號分析..................................................................15 2.6 電腦模擬....................................................................................16 2.7 硬體實測....................................................................................21 第三章 太陽能之最大功率追蹤演算法..............................................25 3.1 太陽能電池於遮蔽情況之特性...............................................25 3.2 太陽能模擬器...........................................................................26 3.3 最大功率追蹤法則....................................................................29 3.3.1 擾動觀察法......................................................................29 3.3.2 粒子群最佳化法..............................................................31 3.3.3 混合法..............................................................................34 第四章 模擬與硬體實測結果..............................................................36 4.1 數位訊號處理器介面電路.......................................................36 4.2 交錯式控制架構.......................................................................38 4.3 Powersim 模擬...........................................................................39 4.4 硬體實測...................................................................................52 4.4.1 擾動觀察法.......................................................................52 4.4.2 粒子群最佳化法...............................................................56 vi 4.4.3 混合法................................................................................62 4.5 討論...............................................................................................67 第五章 結論與未來展望......................................................................70 5.1 結論...............................................................................................70 5.2 未來展望......................................................................................71 參考文獻.................................................................................................72

    [1] H. Patel and V. Agarwal, “Matlab-based modeling to study the effects
    of partial shading on pv array characteristics,” IEEE Transactions on
    Energy Conversion, vol. 23, no. 1, pp. 302 –310, march 2008.
    [2] H. Ghoddami and A. Yazdani, “A single-stage three-phase
    photovoltaic system with enhanced maximum power point tracking
    capability and increased power rating,” IEEE Transactions on Power
    Delivery, vol. 26, no. 2, pp. 1017 –1029, april 2011.
    [3] A. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison,
    “Cascaded dc-dc converter photovoltaic systems: Power optimization
    issues,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp.
    403 –411, feb.2011.
    [4] M. Fortunato, A. Giustiniani, G. Petrone, G. Spagnuolo, and M.
    Vitelli, “Maximum power point tracking in a one-cycle-controlled
    single-stage photovoltaic inverter,” IEEE Transactions on Industrial
    Electronics, vol. 55, no. 7, pp. 2684 –2693, july 2008.
    [5] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size
    inc mppt method for pv systems,” IEEE Transactions on Industrial
    Electronics, vol. 55, no. 7, pp. 2622 –2628, july 2008.
    [6] N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli,
    “Distributed maximum power point tracking of photovoltaic arrays:
    Novel approach and system analysis,” IEEE Transactions on Industrial
    Electronics,vol. 55, no. 7, pp. 2610 –2621, july 2008.
    [7] Syafaruddin, E. Karatepe, and T. Hiyama, “Artificial neural
    networkpolar coordinated fuzzy controller based maximum power point
    tracking control under partially shaded conditions,” IET Renewable
    Power Generation, vol. 3, no. 2, pp. 239 –253, june 2009.
    [8] D. Nguyen and B. Lehman, “An adaptive solar photovoltaic array
    using model-based reconfiguration algorithm,” IEEE Transactions on
    Industrial Electronics, vol. 55, no. 7, pp. 2644 –2654, july 2008.
    [9] E. Koutroulis and F. Blaabjerg, “A new technique for tracking the
    global maximum power point of pv arrays operating under
    partial-shading conditions,” IEEE Journal of Photovoltaics, vol. 2, no. 2,
    pp. 184 –190, april 2012.
    [10] K. Kobayashi, I. Takano, and Y. Sawada, “A study on a two stage
    maximum power point tracking control of a photovoltaic system under
    partially shaded insolation conditions,” in IEEE Power Engineering
    Society General Meeting, vol. 4, july 2003, p. 4 vol. 2666.
    [11] B. Alajmi, K. Ahmed, S. Finney, and B. Wayne Williams, “A
    maximum power point tracking technique for partially shaded
    photovoltaic systems in microgrids,” IEEE Transactions on Industrial
    Electronics, vol. PP, no. 99, p. 1, 2011.
    [12] M. Miyatake, T. Inada, I. Hiratsuka, H. Zhao, H. Otsuka, and M.
    Nakano, “Control characteristics of a fibonacci-search-based maximum
    power point tracker when a photovoltaic array is partially shaded,” in
    Power Electronics and Motion Control Conference, 2004. IPEMC 2004.
    The 4th International, vol. 2, aug. 2004, pp. 816 –821 Vol.2.
    [13] H. Patel and V. Agarwal, “Maximum power point tracking scheme
    for pv systems operating under partially shaded conditions,” IEEE
    Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689 –1698,
    april 2008.
    [14] http://www.regatron.ch/index.php?TPL=10154
    [15]陳佳暉「以數位信號處理器為基礎之太陽能發電系統研製」,碩
    士論文,國立台灣科機大學,民國九十九年
    [16]劉舜鵬「微型太陽能發電系統研製」,碩士論文,國立台灣科技
    大學,民國一百年
    [17]顧鴻濤,太陽能電池元件導論,全威圖書有限公司,2008年
    [18]沈輝、曾祖勤,太陽能光電技術,五南圖書出版社,2010年

    QR CODE