簡易檢索 / 詳目顯示

研究生: 朱能億
Neng-Yi Chu
論文名稱: 高效率混合型太陽能發電系統之研製
Design and Implementation of the High-Efficiency Hybrid PV Power System
指導教授: 陳良瑞
Liang-Rui Chen
楊宗銘 
Chung-Ming Young
口試委員: 林長華
Chang-Hua Lin
王見銘
Wang,Chien-Ming
劉益華 
YEN-SHIN LAI
邱煌仁
Huang-Jen Chiu
賴炎生
YEN-SHIN LAI
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 混合型太陽能發電系統分流式電流漣波補償串接模組集合式電池平衡
外文關鍵詞: battery balancing, cascaded module integrated, ripple reducing, current-sharing, hybrid PV power system
相關次數: 點閱:210下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩個具提升整體太陽能系統發電效能之新型混合型太陽能發電系統,分別為具電流漣波消除功能之分流式太陽能發電系統與串接模組集合式太陽能發電系統。本論文首先探討太陽能模組建構與直流/交流換流器所產生之低頻電流漣波對於太陽能模組發電效率之影響,與各種電池平衡電路之動作原理,藉此了解目前混合型太陽能發電系統可改善之方向。接著針對本論文提出之系統電路架構,詳述其系統動作原理與電路設計考量。最後,分別以實驗結果證實所提之系統架構具有提升整體混合型太陽能發電系統之發電效率、負載供電度等功能。兩個所提出之系統電路之主要特點整理如下:
    具電流漣波消除功能之分流式太陽能發電系統,採用一雙向直流/直流轉換器並接於串接式太陽能模組與直流/交流換流器上,藉由控制雙向直流/直流轉換器所產生之補償電流,同時實現太陽能最大功率追蹤、輸出負載電能調節與降低太陽能模組輸出電流漣波等功能。本文於章節中探討所提系統之小訊號模型,藉由波德圖驗證該系統為一穩定系統,並使用一領先型補償電路,使其縮小漣波電流補償誤差量與提升系統響應速度。本文實際製作一1200W之原型機證實本文所提系統之性能與優點。實驗結果證明,本文所提系統具有太陽能最大功率追蹤,調節負載供電穩定度之功能,使其太陽能模組之輸出電流漣波可縮小至傳統太陽能發電系統之3%,藉此可提升整體太陽能發電系統之發電效率。
    串接模組集合式太陽能發電系統,前級採用模組集合式太陽能發電系統架構,有效地增加太陽能模組之發電效率。而後級為一具電池平衡功能之多階層換流器,其主要藉由控制各週期之供電電池組合與多階層換流器的導通角度,實現電池平衡與降低輸出交流電壓諧波成分之功能。本文利用軟體Simulink建立一系統模型與實際製作一1kW原型機,模擬與實驗結果皆證明本文具有控制各階層電池之放電週期,進而實現平衡電池電量之功能。該系統之輸出交流基頻電壓有限值維持於110V ± 8% 之範圍,並可抑制第三次與第五次諧波成分以改善輸出交流電壓之電力品質。除此之外,本文所提系統實驗一電池老化情況,並與傳統無電池平衡功能之換流器比較,電池電能使用率可改善39.3%,電池供電時間可延長1.405倍。


    This dissertation proposes two hybrid PV power systems which increases the power efficiency of the PV power system. They are current-sharing PV power system with ripple reducing and cascaded module integrated PV power system, respectively.
    In this dissertation, first, we are discussing the power efficiency effect of the PV modules affected by the PV modules construction and the low-frequency ripple current of the dc/ac inverter. Addition, we are discussing the operation principle of the battery balance circuit. To learn about the direction of the hybrid solar power system can be improved the current. Next, the circuit operation principle, design considerations of each proposed system are all detailed in this dissertation. Finally, the experimental results were confirmed in the proposed system to enhance the efficiency of power generation with the overall hybrid PV power system and stability of the power supply system. The major features of the two proposed system are summarized as follows:
    Current-sharing PV power system with ripple reduction is mainly constructed by a series-connected PV module, which is parallel with a bidirectional dc/dc converter. By controlling the compensation current of the bidirectional dc/dc converter, the system can really track the maximum power point of the PV module, regulate the output load energy and reduce current ripple at the same time. In this dissertation, the small signal of the proposed system is derived. By the bode plot, the stability of the proposed system can be verified. The lead compensator is used to reduce the current ripple compensation error and improve the response speed of the system. Finally, a 1200W prototype is implemented to verify the performance and the advantage. From experiment result, the proposed system can track the maximum power point of the PV module, improving the stability of the proposed system. Addition, the output current ripple of the PV module can be reduced to 3% of the tradition PV power system. The power efficiency of the PV modules is increased.
    Cascaded module integrated PV power system is composed of cascaded module integrated construction which can increase the power efficiency of the PV power system and multilevel inverter with battery balancing. The battery balance and reduction the harmonics component of the output ac voltage controlled by the combination of the discharge battery and conduction angle of the multi-level inverter. a prototype is realized to verify the feasibility and advantage by Simulink simulation and a 1kW prototype is implemented to verify the performance of the proposed system. From the simulation and experimental result, we can obtain that the proposed system can control the discharge period of each battery cell of the system, so that the battery balance function can be realized. At the same time, the base frequency voltage of the AC output is limited between 110V ±8%, and the 3rd. and 5th. harmonics are suppressed. Therefore, the output power quality can be improved. Besides, this paper uses the small capacity battery to verify the battery aging experiments. From the experimental result, comparing with the traditional inverter without battery balance function, the proposed system can be improved the battery energy usage by 39.3%, and the working time of the system can be extended 1.405 times.

    中文摘要……………………………………………………………. I 英文摘要…………………………………………………………… III 誌謝………………………………………………………………… V 目錄………………………………………………………………… VI 符號索引…………………………………………………………… VIII 圖索引……………………………………………………………… X 表索引……………………………………………………………… XV 第一章 緒論……………………………………………………….. 1 1.1 研究背景與動機…………………………………….... 1 1.2 論文貢獻……………………………………………… 9 1.3 章節概述……………………………………………… 11 第二章 混合型太陽能發電系統探討…………………………….. 13 2.1太陽能模組與低頻電流漣波之影響………………… 13 2.2 電池平衡技術探討………………………………...… 20 2.2.1 消耗型電池平衡電路…………………………. 20 2.2.2 非消耗型電池平衡電路…………………….… 22 第三章 具電流漣波消除功能之分流式太陽能發電系統………. 31 3.1 系統原理………………………………………..……. 31 3.2 電路設計………………………………………..……. 39 3.3 實例設計………………………………………..……. 48 3.4 實驗結果………………………………………..……. 50 第四章 串接模組集合式太陽能發電系統……………………….. 57 4.1 系統原理………………………………….………….. 57 4.2 電池平衡放電策略……………………….………….. 62 4.3 特定諧波抑制技術……………………….………….. 70 4.4 實例設計……………………….…………………….. 74 4.4.1 硬體電路設計 ………..…………….………….. 79 4.4.2 軟體流程規劃 ………..…………….………….. 85 4.5 系統模擬驗證與實驗結果……….……….…………. 88 4.5.1 系統模擬驗證……….………..…….………..... 88 4.5.2 實驗結果……….………..…….……………..... 98 第五章 結論與未來展望……….………..…….….……………..... 110 5.1 結論……….………..…….…………..……………..... 110 5.2 未來展望……….………..…….….…….…………..... 112 參考文獻……….………..…….….…………………..…………..... 114

    [1] S. R. Bull, “Renewable energy today and tomorrow,” Proc. Engineering Profession; General Topics for Engineers IEEE, vol. 89, no. 8, pp. 1216-1226, 2001.
    [2] “RenewableS 2012,” Global Status Report, 2012.
    [3] 能源統計手冊 Energy Statistics Handbook 2010, 經濟部能源局 ISSN 1726-3743
    [4] T. Kerekes, R. Teodorescu, M. Liserre, C. Klumpner, and M. Sumner, “Evaluation of three-phase transformerless photovoltaic inverter topologies,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 202-211, Sep. 2009.
    [5] M. J. V. Vazquez, J. M. A. Marquez, and F. S. Manzano, “A methodology for optimizing stand-alone PV-system size using parallel-connected DC/DC converter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2664-2673, Jul. 2008.
    [6] B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a gridconnected photovoltaic power system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 992–1000, Apr. 2010.
    [7] D. D. Lu and V. G. Agelidis, “Photovoltaic-battery-powered dc bus system for common portable electronic devices,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849–855, Mar. 2009.
    [8] T. Hirose and H. Matsuo, “Standalone hybrid wind-solar power generation system applying dump power control without dump load,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 988-997, Feb. 2012.
    [9] H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4583-4592, Oct. 2012.
    [10] Z. Haihua, T. Bhattacharya, T. Duong, T. S. T. Siew, and A. M. Khambadkone, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930, Mar. 2011.
    [11] H. Qian, J. Zhang, J. S. Lai, and Wensong Yu, “A high-efficiency grid-tie battery energy storage system,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 886-896, Mar. 2011.
    [12] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu; J. Rodriguez, M. A. Pérez, J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
    [13] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 769-776, May/Jun. 2007.
    [14] R. J. Wai, C. Y. Lin, Y. C. Huang, and Y. R. Chang, “Design of high-performance stand-alone and grid-connected inverter for distributed generation applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1542-1555, Apr. 2013.
    [15] R. Tonkoski, L. A. C. Lopes and T. H. M. El-Fouly, “Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention“ IEEE Trans. on Sustainable Energy, vol. 2, no. 2, pp. 139-147, Apr. 2011.
    [16] E. Curtright and J. Apt, “The character of power output from utilityscale photovoltaic systems,” IProg. Photovolt: Res. Appl., vol. 16, pp. 241-247, 2008.
    [17] M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, “A load adaptive control approach for a zero-voltage-switching dc/dc converter used for electric vehicles,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 920-933, Feb. 2012.
    [18] B. Y. Chen and Y. S. Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1545-1553, Mar. 2012.
    [19] H. Fakham, D. Lu, and B. Francois, ”Power control design of a battery charger in a hybrid active PV generator for load-following applications,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 85-94, Jan. 2011.
    [20] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
    [21] K. Jin, M. Yang, X. Ruan, and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976-1986, Jun. 2010.
    [22] G. S. Seo, K. C. Lee, and B. H. Cho, “A new dc anti-islanding technique of electrolytic capacitor-less photovoltaic interface in dc distribution systems” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1632-1641, Apr 2013.
    [23] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems—An overview,” in Proc. IEEE PESC’02, vol. 2, 2002, pp. 1995–2000.
    [24] B. Verhoeven et al.. (1998) Utility Aspects of Grid Connected Photovoltaic Power Systems. International Energy Agency Photovoltaic Power Systems, IEA PVPS T5-01: 1998.
    [25] G. Lijun, R. A. Dougal, L. Shengyi, and A. P. Iotova, "Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,", IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1548-1556, May. 2009.
    [26] T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Trans. Energy Conver., vol. 22, no.2 pp. 439-449, Jun. 2007.
    [27] A. Safari and S. Mekhilef, "Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1154-1161, Apr. 2011.
    [28] L. Fangrui, K. Yong, Z. Yu, and D. Shanxu, "Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter," in Proc. IEEE Conf. Ind. Electron. and Appli., 2008. ICIEA 2008. 3rd on, 2008, pp. 804-807.
    [29] J. W. Kimball and P. T. Krein, "Discrete-time ripple correlation control for maximum power point tracking," IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2353-2362, Sep. 2008.
    [30] H. Patel and V. Agarwal, "MATLAB-based modeling to study the effects of partial shading on PV array characteristics," IEEE Trans. Energy Convers., vol. 23, pp. 302-310, Mar. 2008.
    [31] J. Pereda and J. Dixon, “High-frequency link: a solution for using only one dc source in asymmetric cascaded multilevel inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3884-3892, Sep. 2011.
    [32] S. Mekhilef and M. N. A. Kadir, “Novel vector control method for three-stage hybrid cascaded multilevel inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1339-1349, Apr. 2011.
    [33] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, Aug. 2002.
    [34] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930-2945, Dec. 2007.
    [35] Pablo Lezana, Jose Rodriguez, Marcelo A. Perez, and Jose Espinoza, “Input current harmonics in a regenerative multicell inverter with single-phase PWM rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 408-417, Feb. 2009.
    [36] Pablo Lezana, Jose Rodriguez, and Diego A. Oyarzun, “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1059-1066, Mar. 2008.
    [37] L. M. Tolbert, Zheng Peng Fang, and T. G. Habetler, ” Multilevel converters for large electric drives,” IEEE Trans. Ind. Appli., vol. 35, no. 1, pp. 36-44, Jan./Feb. 1999.
    [38] H. Taghizadeh and M. T. Hagh, “Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3678-3684, Nov. 2010.
    [39] L. M. Tolbert, J. N. Chiasson, Du Zhong, and K. J. McKenzie, “Elimination of harmonics in a multilevel converter with nonequal DC sources,” IEEE Trans. Ind. Appli., vol. 41, no. 1, pp. 75-82, Jan./Feb. 2005.
    [40] J. P. Benner and L. Kazmerski, “Photovoltaics gaining greater visibility,” IEEE Spectrum, vol. 26, pp. 34-42, Sep 1999.
    [41] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorimthon for rapidly changing atmospheric conditions,“ IEEE proc. Gener. Trans. Distrib., vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [42] [D17] D. S. H. Chan, J. R. Phillips and J. C. H. Phang, “A comparative study of extraction methods for solar cell model parameters,” Solid-State Electronics, Printed in Great Britain, vol. 29, no. 3, pp. 329-337, 1986.
    [43] S. V. Araujo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118-3128, Sep. 2010.
    [44] G. Petrone, G. Spagnuolo, and M. Vitelli, “A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 76-84, Jan. 2011.
    [45] T. Kerekes, R. Teodorescu, P. Rodríguez, G. Vázquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 184-191, Jan. 2011.
    [46] R. Kadri, J. P. Gaubert, and G. Champenois, “An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 66-75, Jan. 2011.
    [47] M. Castilla, J. Miret, A. Camacho, J. Matas, and L. G. de Vicuna, “Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1464-1472, Apr. 2013.
    [48] H Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems,” IEEE Trans. on Power Electron., vol. 28, no. 6, pp. 2711-2726, Jun. 2013.
    [49] S. Zengin, F. Deveci, and M. Boztepe, “Decoupling capacitor selection in DCM flyback PV microinverters considering harmonic distortion,” IEEE Trans. on Power Electron., vol. 28, no. 2, pp. 816-825, Feb. 2013.
    [50] K. Harada and S. Nonaka, “FFT analysis of the composite PWM voltage source inverter,” in Proc. Power Convers. Conf., 2002, vol. 3, pp. 1257-1261.
    [51] M. Schenck, J. S. Lai, and K. Stanton, “Fuel cell and power conditioning system interactions,” in Proc. IEEE Appl. Power Electron. Conf., 2005, pp. 114-120.
    [52] M. Huber, W. Amrhein, S. Silber, M. Reisinger, G. Knecht, and G. Kastinger, “Current ripple reduction of DC link electrolytic capacitors by switching pattern optimisation,” in Proc. IEEE Power Electron. Spec. Conf., 2005, pp. 1875-1880.
    [53] C. R. Liu and J. S. Lai, “Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1429-1436, Jul. 2007.
    [54] S. Ostroznik, P. Bajec, and P. Zajec, “A study of a hybrid filter,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 935-942, Mar. 2010.
    [55] R. J. Wai and C. Y. Lin, “Dual active low-frequency ripple control for clean-energy power-conditioning mechanism,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5172-5185, Nov. 2011.
    [56] H Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2711-2726, Jun. 2013.
    [57] S. Zengin, F. Deveci, and M. Boztepe, “Decoupling capacitor selection in DCM flyback PV microinverters considering harmonic distortion,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 816-825, Feb. 2013.
    [58] R. Tonkoski, L. A. C. Lopes and T. H. M. El-Fouly, “Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention“ IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 139-147, Apr. 2011.
    [59] J. M. Guerrero, J. Matas, V. Luis Garcia de, M. Castilla, and J. Miret, Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 994-1004, Apr. 2007.
    [60] M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1390-1402, Apr. 2013.
    [61] D Lu, H Fakham, T Zhou, B Francois, “Application of Petri nets for the energy management of a photovoltaic based power station including storage units,” Renewable energy, vol. 35, no. 6, pp. 1117-1124, Jun. 2010.
    [62] T. Hirose and H. Matsuo, “Standalone hybrid wind-solar power generation system applying dump power control without dump load,” IEEE Trans. on Ind. Electron., vol. 59, no. 2, pp. 988-997, Feb. 2012.
    [63] H. Fakham, D. Lu, and B. Francois, “Power control design of a battery charger in a hybrid active PV generator for load-following applications,” IEEE Trans. on Ind. Electron., vol. 58, no. 1, pp. 85-94, Jan. 2011.
    [64] 26 Y. C. Chang, C. L. Kuo, K. H. Sun, and T. C. Li, “Development and operational control of two-string maximum power point trackers in dc distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1852-1861, Apr. 2013.
    [65] J. Pereda and J. Dixon, “High-frequency link: a solution for using only one dc source in asymmetric cascaded multilevel inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3884-3892, Sep. 2011.
    [66] S. Mekhilef and M. N. A. Kadir, “Novel vector control method for three-stage hybrid cascaded multilevel inverter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1339-1349, Apr. 2011.
    [67] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, Aug. 2002.
    [68] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930-2945, Dec. 2007.
    [69] Pablo Lezana, Jose Rodriguez, Marcelo A. Perez, and Jose Espinoza, “Input current harmonics in a regenerative multicell inverter with single-phase PWM rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 408-417, Feb. 2009.
    [70] Pablo Lezana, Jose Rodriguez, and Diego A. Oyarzun, “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1059-1066, Mar. 2008.
    [71] L. M. Tolbert, Zheng Peng Fang, and T. G. Habetler, ” Multilevel converters for large electric drives,” IEEE Trans. Ind. Appli., vol. 35, no. 1, pp. 36-44, Jan./Feb. 1999.
    [72] H. Taghizadeh and M. T. Hagh, “Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3678-3684, Nov. 2010.
    [73] L. M. Tolbert, J. N. Chiasson, Du Zhong, and K. J. McKenzie, “Elimination of harmonics in a multilevel converter with nonequal DC sources,” IEEE Trans. Ind. Appli., vol. 41, no. 1, pp. 75-82, Jan./Feb. 2005.
    [74] S. A. Mohamed Dahidah and G. Agelidis Vassilios, “Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: a generalized formula,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1620-1630. July 2008.
    [75] S. H. Hosseini, A. K. Sadigh, S. M. Barakati, and M. F. Kangarlu, “Comparison of SPWM technique and selective harmonic elimination using genetic algorithm,” in Proc. Electrical and Electronics Engineering, pp. 278-282, Dec. 2009.
    [76] E. Guan, P. Song, and M. Ye, “Selective harmonic elimination techniques for multilevel cascaded H-bridge inverters,” in Proc. Power Electron. and Drives Systems, pp. 1441-1446, Apr. 2006
    [77] L. Li, D. Czarkowski, Y. Liu, and P. Pillay, “Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters,” IEEE Trans. Ind. Appli., vol. 36, No. 1, pp. 160-170. Jan.-Feb. 2000.
    [78] A. Muthuramalingam, M. Balaji, and S. Himavathi, “Selective harmonic elimination modulation method for multilevel inverters”, in Proc. India International Conf. on Power Electron., IICPE 2006, pp. 40-45, Nov. 2008.
    [79] F. J. T. Filho, T. H. A. Mateus, H. Z. Maia, B. Ozpineci, J. O. P. Pinto, and L. M. Tolbert, “Real-time selective harmonic minimization in cascaded multilevel inverters with varying DC sources,” in Proc. Power Electron. Specialists Conf., pp. 4302-4306, August 2008.
    [80] N. Yousefpoor, S. H. Fathi, N. Farokhnia, and H. A. Abyaneh, “Application of OMTHD on the line voltage of cascaded multi-level inverters with adjustable DC,” in Proc. 5th Ind. Electron. and Appli., pp. 498-503, Jul. 2010.
    [81] N. Yousefpoor, N. Farokhnia, S. H. Fathi, and J. S. Moghani, “Developed single-phase OMTHD technique for cascaded multi-level inverter by considering adjustable DC sources,” in Proc. Electric Power and Energy Conv. Systems, pp. 1-6, Feb. 2009.
    [82] “High-performance battery monitor IC with coulomb counter, voltage and temperature measurement bq26220,” Texas Instruments Incorporated, 2004.
    [83] “HT46R24/HT46C24 A/D type 8-bit MCU,” Holtek Semiconductor INC., 2004.

    QR CODE