簡易檢索 / 詳目顯示

研究生: 彭柏瑞
Bo-Ruei Peng
論文名稱: 以太陽能特性方程式為基礎 之快速最大功率追蹤技術研製
Development of a Fast Maximum Power Point Tracking Technology Based on Photovoltaic Characteristic Equation
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
林長華
Chang-Hua Lin
邱煌仁
Huang-Jen Chiu
羅有綱
Yu-Kang Lo
王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 143
中文關鍵詞: 太陽能發電系統最大功率追蹤特性方程式Alpha 因子擾動觀察法
外文關鍵詞: Photovoltaic generation system(PGS), Maximum Power Point Tracking(MPPT), Characteristic equation, Alpha factor perturb and observe method
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能發電系統具備低汙染、無燃料成本、低維護需求與永續發
    展等優勢,但因目前光伏轉換效率低,在環境因素變動時,常使其電
    力輸出降低,因此如何獲取太陽能電池之最大功率輸出對太陽能發電
    系統是非常重要的,之前文獻已提出許多最大功率追蹤技術並加以實
    現。當太陽能發電系統安裝於照度與溫度急遽變化的地區時,其輸出
    功率會因環境因素產生劇烈變化,以目前最大功率追蹤技術無法立即
    追蹤至最大功率點上,導致太陽能電池輸出功率損失,因此開發具有
    快速追蹤能力之最大功率追蹤演算法是很重要的議題。
    本文提出一種新型兩階段最大功率追蹤技術。所提出之方法結合
    α 因子擾動觀察法與利用太陽能模組特性方程式來估測操作條件,以
    確保快速追蹤及高追蹤精確度。為了驗證所提之方法正確性,本文實
    際完成一600W的最大功率追蹤電路。實驗結果證實與固定步階式擾
    動觀察法、變動式步階擾動觀察法與Alpha 因子擾動觀察法相比,本
    方法的追蹤速度分別改善了92.5 %、87.5 %與77.8 %,而追蹤電能損
    失也分別減少了85.8%、76.7%和70.7%。


    Photovoltaic generation system (PGS) gains its popularity in the
    market due to the advantages of free fuel consumption, low maintenance
    cost and environmental sustainability. For PGS, maximum power point
    tracking (MPPT) is one of the essential part since it can maximize the
    utilization of solar energy. When the PGS is installed in the area with
    rapidly changing irradiance. There is certain amount of energy loss if
    MPPT system fails to instantly operate at the MPP. Consequently, it is very
    crucial to develop a novel MPPT method featuring fast tracking.
    In this dissertation, a novel two-stage MPPT technique is proposed.
    The proposed method combines the α-factor perturb and observe (P&O)
    method and utilized the characteristic equation of PV module for
    estimating the operation condition and ensuring an accurate and high speed
    tracking. To validate the proposed MPPT algorithm, a 600 W prototyping
    circuit is also constructed. Comparing with conventional P&O method,
    variable step-size P&O method and α-factor P&O method, the tracking
    speed of the presented method can be improved by 92.5 %, 87.5 % and
    77.8 %, respectively. In addition, the tracking energy loss can be improved
    by 85.8 %, 76.7 % and 70.7 %, respectively.

    摘要 ............................................................................................................. I Abstract ...................................................................................................... II 誌謝 ........................................................................................................... III 目錄..........................................................................................................IV 圖目錄 ........................................................................................................ X 表目錄 ................................................................................................... XIV 第一章 緒論 ............................................................................................... 1 1.1 研究背景與動機 ........................................................................... 1 1.2 研究目的 ....................................................................................... 2 1.3 文獻探討 ....................................................................................... 3 1.4 太陽能最大功率追蹤系統架構 ................................................... 6 1.5 論文大綱 ....................................................................................... 7 第二章 太陽能電池介紹 ........................................................................... 8 2.1 太陽能電池簡介 ........................................................................... 8 2.2 太陽能電池原理 ........................................................................... 9 2.3 太陽能電池種類介紹 ................................................................. 10 2.4 太陽能電池電氣特性 ................................................................. 13 第三章 太陽能最大功率追蹤技術簡介 ................................................. 19 3.1 最大功率追蹤技術簡介 ............................................................. 19 3.2 傳統最大功率追蹤技術 ............................................................. 19 3.2.1 開路電壓法 ............................................................................. 20 3.2.2 短路電流法 ............................................................................. 21 3.2.3 實際量測法 ............................................................................. 21 3.2.4 擾動觀察法 ............................................................................. 23 3.2.5 增量電導法 ............................................................................. 24 3.3 快速最大功率追蹤技術 ............................................................. 27 3.3.1 直線近似法 ............................................................................. 28 3.3.2 雙直線近似法 ......................................................................... 29 3.3.3 變動步階式擾動觀察法 ......................................................... 31 3.3.4 數位PI 控制擾動觀察法 ........................................................ 33 3.3.5 自適應變動步階式增量電導法 ............................................. 35 3.3.6 數學模型與軟體計算法 ......................................................... 41 3.3.7 兩段式追蹤法 ......................................................................... 42 第四章 太陽能最大功率追蹤系統之硬體架構設計 ............................ 44 4.1 最大功率追蹤系統架構 ............................................................. 44 4.2 升壓式轉換器電路介紹 ............................................................. 45 4.3 升壓式轉換器之動作原理 ......................................................... 45 4.4 升壓式轉換器電路元件設計 ..................................................... 52 4.5 緩振電路介紹 ............................................................................. 55 第五章 太陽能最大功率追蹤系統之韌體架構設計 ............................ 57 5.1 數位訊號微控制器簡介 ............................................................. 58 5.2 數位濾波器設計 ......................................................................... 60 5.2.1 類比濾波器 ............................................................................. 60 5.2.2 數位濾波器 ............................................................................. 61 5.2.3 有限脈衝響應濾波器 ............................................................. 63 5.2.4 有限脈衝響應濾波器設計 ..................................................... 64 5.3 數位PID 控制器 ........................................................................ 67 5.3.1 PID 控制器原理 ...................................................................... 68 5.3.2 數位PID 控制器實現 ............................................................. 69 5.4 本文所提最大功率追蹤技術簡介 ............................................. 72 5.4.1 簡化型估測法 ......................................................................... 72 5.4.2 Alpha 因子擾動觀察法 .......................................................... 75 5.4.3 本文所提之快速最大功率追蹤技術 ..................................... 79 5.5 韌體主程式架構 ......................................................................... 83 第六章 實驗模擬與結果分析 ................................................................. 85 6.1 本文實驗環境與設備介紹 ......................................................... 85 6.2 太陽能最大功率追蹤之量測準則與性能評估 ........................ 90 6.3 太陽能最大功率追蹤系統模擬 ................................................. 91 6.3.1 固定步階式擾動觀察法模擬 ................................................. 92 6.3.2 變動步階式擾動觀察法模擬 ................................................. 94 6.3.3 Alpha 因子擾動觀察法模擬 .................................................. 96 6.3.4 本文所提之快速最大功率追蹤法模擬 ................................. 98 6.3.5 模擬結果比較及分析 ........................................................... 102 6.4 太陽能最大功率追蹤系統實驗 ............................................... 103 6.4.1 固定步階式擾動觀察法實測 ................................................ 103 6.4.2 變動步階式擾動觀察法實測 ................................................ 104 6.4.3 Alpha 因子擾動觀察法實測 .................................................. 105 6.4.4 本文所提之快速最大功率追蹤法實測 ................................ 106 6.4.5 實驗結果分析與比較 ............................................................ 113 第七章 結論與未來展望 ...................................................................... 117 7.1 結論 .............................................................................................. 117 7.2 未來展望 ...................................................................................... 118 參考文獻 ................................................................................................. 119

    [1] Renewable Energy Policy Network for the 21st Century, Available at:
    http://www.ren21,net/.
    [2] J. S. Lee and K. B. Lee, “Variable DC-Link Voltage Algorithm with a
    Wide Range of Maximum Power Point Tracking for a Two-String PV
    System,” Energies, vol. 6, pp. 58–78, Dec. 2013.
    [3] C. L. Shen and C. T. Tsai, “Double-Linear Approximation Algorithm
    to Achieve Maximum-Power-Point Tracking for Photovoltaic
    Arrays,” Energies, vol. 5, pp. 1982–1997, Jun. 2012.
    [4] D. Sera, T. Kerekes, R. Teodorescu and F. Blaabjerg, “Improved
    MPPT Algorithms for Rapidly Changing Environmental Conditions,”
    in Proceeding Power Electronics and Motion Control, 2006, pp.1614–
    1619.
    [5] Y. C. Kuo, T. J. Liang and J. F. Chen, “Novel maximum-power-pointtracking
    controller for photovoltaic energy conversion system,” IEEE
    Transactions on Industrial Electronics, vol. 48, no. 3, pp. 594–601,
    Jun. 2001.
    [6] P. C. Chen, P. Y. Chen, Y. H. Liu, J. H. Chen, and Y. F. Luo, “A
    comparative study on maximum power point tracking techniques for
    photovoltaic generation systems operating under fast changing
    environments,” Solar Energy, vol. 119, pp. 261-276, 2015
    [7] B. R. Peng, K. C. Lo and Y. H. Liu, “A novel and fast MPPT method
    suitable for both fast changing and partially shaded conditions,” IEEE
    Transactions on Industrial Electronics, 2017.
    [8] S. Jiang, D. Cao, Y. Li, and F. Z. Peng, “Grid-connected boost-halfbridge
    photovoltaic microinverter system using repetitive current
    control and maximum power point tracking,” IEEE Transactions on
    Power Electronics, vol. 27, no. 11, pp. 4711-4722, 2012.
    [9] R. Faraji, M. R. Chavoshian, A. Rouholamini, H. R. Naji, and R.
    Fadaeinedjad, “FPGA-based real time incremental conductance
    maximum power point tracking controller for photovoltaic systems,”
    IET Power Electronics, vol. 7, no. 5, pp. 1294-1304, 2014.
    [10] H. Fathabadi, “Novel fast dynamic MPPT (maximum power point
    tracking) technique with the capability of very high accurate power
    tracking,” Energy, vol. 94, pp. 466-475, 2016.
    [11] H. Fathabadi, “Novel fast and high accuracy maximum power point
    tracking method for hybrid photovoltaic/fuel cell energy conversion
    systems,” Renewable Energy, vol. 106, pp. 232-242, 2017.
    [12] F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang, “A Variable Step Size INC
    MPPT Method for PV System,” IEEE Transactions on Industrial
    Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
    [13] M. Killi and S. Samanta, “Modified Perturb and Observe MPPT
    Algorithm for Drift Avoidance in Photovoltaic Systems,” IEEE
    Transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5549-5559,
    2015.
    [14] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “High-performance
    algorithms for drift avoidance and fast tracking in solar MPPT
    system,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp.
    681-689, 2008.
    [15] L. Fangrui, D. Shanxu, L. Fei, L. Bangyin, and K. Yong, “A variable
    step size INC MPPT method for PV systems,” IEEE Transactions on
    Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, 2008.
    [16] Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, “A novel improved
    variable step-size incremental-resistance MPPT method for PV
    systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6,
    pp. 2427-2434, 2011.
    [17] K. S. Tey, and S. Mekhilef, “Modified incremental conductance
    MPPT algorithm to mitigate inaccurate responses under fast-changing
    solar irradiation level,” Solar Energy, vol. 101, pp. 333-342, 2014.
    [18] S. K. Kollimalla, and M. K. Mishra, “Variable perturbation size
    adaptive P&O MPPT algorithm for sudden changes in irradiance,”
    IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 718-728,
    2014.
    [19] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “Highperformance
    adaptive perturb and observe mppt technique for
    photovoltaic-based microgrids,” IEEE Transactions on Power
    Electronics, vol. 26, no. 4, pp. 1010-1021, 2011.
    [20] Y. T. Chen, Z. H. Lai, and R. H. Liang, “A novel auto-scaling variable
    step-size MPPT method for a PV system,” Solar Energy, vol. 102, pp.
    247-256, 2014.
    [21] Y. H. Liu, J. H. Chen, and J. W. Huang, “Global maximum power
    point tracking algorithm for PV systems operating under partially
    shaded conditions using the segmentation search method,” Solar
    Energy, vol. 103, pp. 350-363, 2014.
    [22] Y. Hong, S. N. Pham, T. Yoo, K. Chae, K.-H. Baek, and Y. S. Kim,
    “Efficient maximum power point tracking for a distributed PV system
    under rapidly changing environmental conditions,” IEEE
    Transactions on Power Electronics, vol. 30, no. 8, pp. 4209-4218,
    2015.
    [23] R. Bradai, R. Boukenoui, A. Kheldoun, H. Salhi, M.Ghanes, J-P.
    Barbot and A. Mellit, “Experimental assessment of new fast MPPT
    algorithm for PV systems under non-uniform irradiance conditions,”
    Applied Energy, vol. 199, pp. 416-429, 2017.
    [24] M. Uoya, and H. Koizumi, “A calculation method of photovoltaic
    array's operating point for MPPT evaluation based on onedimensional
    newton raphson method,” IEEE Transactions on
    Industry Applications, vol. 51, no. 1, pp. 567-575, 2015.
    [25] T. K. Soon, and S. Mekhilef, “A fast-converging MPPT technique for
    photovoltaic system under fast-varying solar irradiation and load
    resistance,” IEEE Transactions on Industrial Informatics, vol. 11, no.
    1, pp. 176-186, 2015.
    [26] J. H. Teng, W. H. Huang, T. A. Hsu, and C. Y. Wang, “Novel and fast
    maximum power point tracking for photovoltaic generation,” IEEE
    Transactions on Industrial Electronics, pp. 4955-4966, 2016.
    [27] K. H. Chao, “An extension theory-based maximum power tracker
    using a particle swarm optimization algorithm,” Energy Conversion
    and Management, vol. 86, pp. 435-442, 2014.
    [28] J. Prasanth Ram and N. Rajasekar, “A new robust, mutated and fast
    tracking LPSO method for solar PV maximum power point tracking
    under partial shaded conditions,” Applied Energy, vol. 201, pp. 45-59,
    2017.
    [29] A. Al Nabulsi, and R. Dhaouadi, “Efficiency optimization of a DSPbased
    standalone PV system using fuzzy logic and dual-MPPT
    control,” IEEE Transactions on Industrial Informatics, vol. 8, no. 3,
    pp. 573-584, 2012.
    [30] C. L. Liu, J. H. Chen, Y. H. Liu, and Z. Z. Yang, “An asymmetrical
    fuzzy-logic-control-based MPPT algorithm for photovoltaic
    systems,” Energies, vol. 7, no. 4, pp. 2177-2193, 2014.
    [31] R. Rajesh, and M. C. Mabel, “Efficiency analysis of a multi-fuzzy
    logic controller for the determination of operating points in a PV
    system,” Solar Energy, vol. 99, pp. 77-87, 2014.
    [32] R. Boukenoui, H. Salhi, R. Bradai and A. Mellit, “A new intelligent
    MPPT method for stand-alone photovoltaic system operating under
    fast transient variations of shading patterns,” Solar Energy, vol. 124,
    pp. 124-142, 2016.
    [33] O. Guenounou, B. Dahhou, and F. Chabour, “Adaptive fuzzy
    controller based MPPT for photovoltaic systems,” Energy Conversion
    and Management, vol. 78, pp. 843-850, 2014.
    [34] R. Arulmurugan, and N. Suthanthiravanitha, “Model and design of a
    fuzzy-based Hopfield NN tracking controller for standalone PV
    applications,” Electric Power Systems Research, vol. 120, pp. 184-
    193, 2015.
    [35] Y. H. Liu, C. L. Liu, J. W. Huang and J. H. Chen, “Neural-networkbased
    maximum power point tracking methods for photovoltaic
    systems operating under fast changing environments,” Solar Energy,
    vol. 89, pp. 42-53, 2013.
    [36] L. V. Hartmann, M. A. Vitorino, M. B. d. R. Correa, and A. M. N.
    Lima, “Combining model-based and heuristic techniques for fast
    tracking the maximum-power point of photovoltaic systems,” IEEE
    Transactions on Power Electronics, vol. 28, no. 6, pp. 2875-2885,
    2013.
    [37] S. K. Kollimalla, and M. K. Mishra, “A novel adaptive P&O MPPT
    algorithm considering sudden changes in the irradiance,” IEEE
    Transactions on Energy Conversion, vol. 29, no. 3, pp. 602-610, 2014.
    [38] H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-
    Haddad, and M. Chiaberge, “A new sensorless hybrid mppt algorithm
    based on fractional short-circuit current measurement and P&O
    MPPT,” IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp.
    1426-1434, 2015.
    [39] K. Sundareswaran, V. Vigneshkumar, P. Sankar, S. P. Simon, P.
    Srinivasa Rao Nayak, and S. Palani, “Development of an improved
    P&O algorithm assisted through a colony of foraging ants for MPPT
    in PV system,” IEEE Transactions on Industrial Informatics, vol. 12,
    no. 1, pp. 187-200, 2016.
    [40] Y. Mahmoud, M. Abdelwahed, and E. F. El-Saadany, “An enhanced
    MPPT method combining model-based and heuristic techniques,”
    IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 576-585,
    2016.
    [41] X. Li, H. Wen, L. Jiang, W. Xiao, Y. Du, and C. Zhao, “An improved
    MPPT method for PV System with fast-converging speed and zero
    oscillation,” IEEE Transactions on Industry Applications, vol. 52, no.
    6, pp. 5051-5064, 2016.
    [42] R. Koad, A. F. Zobaa, and A. El Shahat, “A novel MPPT algorithm
    based on particle swarm optimisation for photovoltaic systems,” IEEE
    Transactions on Sustainable Energy, pp. 1-1, 2016.
    [43] 倪鵬濤,「適用於太陽能發電系統之決定型杜鵑鳥搜尋最大功率
    追蹤法」國立台灣科技大學電機工程系碩士學位論文,民國105
    年 7 月。
    [44] 齋藤勝裕,「3 小時讀通太陽能電池」,世茂出版有限公司,民國
    101 年5 月。
    [45] 顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」,全
    威圖書,民國98 年 10 月。
    [46] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材
    料、製程與檢測技術」,東華書局,民國99 年 5 月。
    [47] 陳敬孝,「基於分段搜尋法之太陽能全域最大功率追蹤」國立台
    灣科技大學電機工程系博士學位論文,民國104 年 7 月。
    [48] H. A. Sher, A. F. Murtaza, K. E. Addoweesh and M. Chiaberge, “An
    Intelligent Off-line MPPT Technique for PV Applications,” IEEE
    Conference on System Process & Control (ICSPE), Kuala Lumpur,
    Malaysia, pp. 316-320, 2013.
    [49] 呂昱德,「適用於太陽能發電系統之兩段式最大功率追蹤技術」
    國立台灣科技大學電機工程系碩士學位論文,民國106 年 7 月。
    [50] F. Vhekired, A. Mellit, S. A. Kalogirou and C.Larbes, “Intelligent
    maximum power point trackers for photovoltaic applications using
    FPGA chip: A comparative study,”Solar Energy, Vol. 101, pp. 83-
    99, 2014.
    [51] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of
    Perturb and Observe Maximum Power Point Tracking Method,” IEEE
    Transactions on Power Electronics, Vol. 20, No.4, pp. 963-973, 2005.
    [52] K. Ishaque and Z. Salam, “A review of maximum power point
    tracking techniques of PV system for uniform insolation and partial
    shading condition,” Renewable and Sustainable Energy Reviews, Vol.
    19, pp. 475-488, 2013.
    [53] 黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」
    國立台灣科技大學電機工程系博士學位論文,民國101 年 7 月。
    [54] Y. H. Liu and J. W. Huang, “A fast and low cost analog maximum
    power point tracking method for low power photovoltaic systems,”
    Solar Energy, Vol. 85, pp. 2771-2780, 2011.
    [55] R. W. Erickson and D. Maksmovic, “Fundamentals of Power
    Electronics,” 2nd Edition, Kluwer Academic Publishers, 2001.
    [56] 王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90
    年。
    [57] 梁適安,「交換式電源供給器之理論 與實務設計」,全華圖書,民
    國93 年 10 月。
    [58] 江炫樟,「電力電子學」第三版,全華圖書,民國94 年 8 月。
    [59] A. I. Pressman, K. Billimgs and T. Morey, “Switching Power Supply
    Design,” 3 Edition, McGraw-Hill Professional, 2009.
    [60] Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and
    dsPIC33FJ16GSX02/X04,” Available at: http://www.microchip.com.
    [61] Microchip Technology Inc., “dsPIC30F/33F Programmer’s Reference
    Manual,” Available at: http://www.microchip.com.
    [62] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限
    公司,民國98 年 12 月。
    [63] 郭書瑋, “應用於微電網系統之高效能雙向直流/直流轉換器,”
    國立台灣科技大學電子工程系博士學位論文, 民國103 年5 月.
    [64] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有
    限公司,2007 年。
    [65] 劉金琨,「先進PID 控制-MATLAB 仿真」,電子工業出版社
    [66] 李奇樵,「新型變動步階擾動觀察法於最大功率追蹤之研究與實
    現」國立台灣科技大學電機工程系碩士學位論文,民國103 年 7
    月。

    無法下載圖示 全文公開日期 2023/01/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE