簡易檢索 / 詳目顯示

研究生: 黃宇翔
Yu-Hsiang Huang
論文名稱: 具三階段能量管理及最大功率追蹤之直接甲醇燃料電池系統
Direct Methanol Fuel Cell Systems with Tri-stage Energy Management and Maximum Power Point Tracking
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 鄭世仁
Shih-Jen Cheng
馬紅波
Hong-Bo Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 直接甲醇燃料電池具耦合電感之SEPIC轉換器三階段能量管理最大功率追蹤
外文關鍵詞: DMFC, coupled-inductor SEPIC, Tri-stage management, MPPT
相關次數: 點閱:373下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在大部分可攜式電子產品皆配備可長時間提供電力的鋰電池;直接甲醇燃料電池具有高能量密度及使用可攜式的液態燃料並可當作可對電池充電的替代電源。直接甲醇燃料電池深受甲醇滲透影響,它的燃料效率在低功率時呈現低效率,隨著輸出功率的增加而改善。綜合上述特點及各個模組的未知甲醇滲透率,使得最大效率點的追蹤不易控制,有利的是,電池的最大功率點非常接近最大效率點。本論文利用最大功率追蹤演算法逼近最大功率點。此外根據能量的剩餘或不足,利用三階段能量管理演算法控制能量的供給。本文提出的SEPIC轉換器和整體系統控制演法將被進一步探討,而相關的實驗結果將被一併提出。


    Nowadays, most of portable electronic products are equipped with Li-ion battery to provide the sustained energy supply. Besides, direct methanol fuel cells (DMFCs) have several advantages and are widely researched for portable applications. 1. It is portable due to the use of liquid fuel. 2. It has high energy density. Above all, it is easily taken as an alternative for charging batteries. However, DMFC is highly affected by methanol crossover rate. Its efficiency is low at low power and higher as the output power increases. Combined with this characteristic and unknown crossover rate makes the tracking of the maximum efficiency point (MEP) difficult. Fortunately, the maximum power point (MPP) is close to MEP. This thesis utilizes the maximum power point tracking (MPPT) algorithm to approach the MPP and thus approach MEP. Moreover, in attempt to contain the energy supply, the tri-stage energy management’s (TEM’s) algorithm is implemented based on power deficit or surplus. The proposed SEPIC converter and the system algorithms will be discussed, and the experiments results are given too.

    Abstract i 摘要 ii 誌 謝 iii Contents iv List of Figures vii List of Tables x Chapter 1 Introduction 11 1.1. Motivation 11 1.2. Thesis Organization 14 Chapter 2 Basic Concepts of Direct Methanol Fuel Cells 15 2.1. Brief Introduction of Fuel Cell 15 2.1.1. Category of Fuel Cells 15 2.1.2. Theory and Features of Fuel Cell 20 2.1.3. Polarization 24 2.2. Direct Methanol Fuel Cells’ Characteristics 30 2.3. Equivalent Model of Direct Methanol Fuel Cells 32 Chapter 3 Maximum Power Point Tracking Techniques 36 3.1. Introduction 36 3.2. Incremental Conductance Method 36 3.3. Three-Point Weight Method 39 3.4. Perturbation and Observation Method 42 3.5. Comparison and Conclusion for different Methods 43 Chapter 4 Analysis of Coupled-Inductor SEPIC Converter 45 4.1. System architecture 45 4.2. Analysis of Coupled-Inductor SEPIC Converter 46 4.3. Coupled Inductor and Ripple Steering in SEPIC 52 4.3.1. Model of Two Coupled Inductors 52 4.3.2. Ripple Elimination for Input Current 54 Chapter 5 Introduction for Digital Control System 56 5.1. Digital Signal Processor TMS28035 Briefing 56 5.2. Peripheral Circuit Design 60 5.2.1. Driving Circuit Design 60 5.2.2. Voltage and Current Feedback Circuit Designs 62 5.3. System Control Algorithm and Tri-stage Energy Management 65 Chapter 6 Component Selections 67 6.1. Inductor Selection 67 6.2. Input Capacitor Selection 68 6.3. SEPIC Flying Capacitor Selection 68 6.4. Power MOSFET Selection 69 6.5. Output Diode Selection 70 6.6. Output Capacitor Selection 70 Chapter 7 Experimental Results 72 7.1. Converter Specifications 72 7.2. Experimental Measurements 72 7.3. Loss Analysis 81 7.3.1. MOSFET Switching Loss and Conduction Loss 81 7.3.2. Transformer Loss 82 7.3.3. Power loss of the flying capacitor 82 7.3.4. Retifier Diode Loss 83 7.4. Measurement of the Tri-stage Energy Management (TEM) 85 Chapter 8 Conclusions and Future Works 86 References 87

    [1] K. H. Loo, G. R. Zhu, Y. M. Lai, and C. K. Tse, “Development of a Maximum-Power-Point Tracking Algorithm for Direct Methanol Fuel Cell and its Realization in a Fuel Cell/Supercapacitor Hybrid Energy System,’’ 8th IEEE conference. Power Electronics and ECCE Asia, pp. 1753-1760, 2011.
    [2] R. Z. Jiang and D. Chu, “Power management of a direct methanol fuel cell system,’’ Journal of Power Sources, vol. 161, no. 2, pp. 1192-1197, 2006
    [3] H. Dohle, J. Mergel, and D. Stolten, “Heat and power management of a direct-methanol-fuel-cell (DMFC) system,’’ Journal of Power Sources, vol. 111, no. 2, pp. 268-282, 2002.
    [4] A. Casalegno, C. Santoro, F. Rinaldi and R. Marchesi, “Low methanol and high efficiency direct methanol fuel cell: The influence of diffusion layers,” Journal of Power Sources, vol. 196, no. 5, pp. 2669-2675, 2011.
    [5] Y. J. Chiu, T. L. Yu and Y. C. Chung, “A semi-empirical model for efficiency evaluation of a direct methanol fuel cell,” Journal of Power Sources, vol. 196, no. 11, pp. 5053-5063, 2011.
    [6] 黃鎮江編著,燃料電池(修訂版),全華科技圖書股份有限公司,2005年
    [7] 余文隆,「DSP為基礎單級太陽能最大功率蹤換流器之研製」,國立台灣科技大學碩士論文, 2009.
    [8] 李昱葳,「具三階段能量管理及遮蔽狀下最大功率追蹤之太陽能電源系統」,國立台灣科技大學碩士論文, 2012.
    [9] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. On Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
    [10] J. A. Jiang, T. L. Huang, Y. T. Hsiao and C. H. Chen, “Maximum Power Tracking for Photovoltaic Power System,” Journal of Science and Engineering, vol. 8, no. 2, pp. 147-153, 2002.
    [11] M. Dragahi and M. Rezanezhad, “Using Maximum Power capability of Fuel Cell in Direct Methanol Fuel Cell/ Batter Hybrid Power System,” Modern Applied Science, vol. 3, no. 8, pp. 45-55, 2009.
    [12] Z. D. Zhong, H. B. Huo, X. J. Zhu, G. Y. Cao and Y. Ren, “Adaptive maximum power point tracking control of fuel cell power plants,” Journal of Power Sources, vol. 176, no. 1, pp. 259-269, 2008.
    [13] X. Liu and L. A. C. Lopes, “An Improved Perturbation and Observation Maximum Power Point Tracking Algorithm for PV Arrays,” 35th Annual IEEE Power Electronics Specialists Conf., PESC 04, vol. 3, pp. 2005-2010, 2004.
    [14] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimizing Duty-cycle Perturbation of P&O MPPT Technique,” 35th Annual IEEE Power Electronics Specialists Conf., PESE 04, vol. 3, pp. 1939-1944, 2004.
    [15] Y. Jung, J. So, G. Yu and J. Choi, “Improved Perturbation and Observation Method (IP&O) of MPPT Control for Photovoltaic Power Systems,” 31st IEEE Photovoltaic Specialists Conf., pp. 1788-1791, 2005.
    [16] J. Q. Chen and C. Chang, “Analysis and Design of SEPIC Converter in Boundary Conduction Mode for Universal-line Power Factor Correction Applications,” 32nd Annual IEEE Power Electronics Specialists conf., vol 2, pp. 742-747, 2001.
    [17] S. Cuk and Z. Zhang, “Coupled-inductor Analysis and Design,” 17th Annual IEEE Power Electronics Specialists Conf., pp.655-665, 1986.
    [18] ST Microelectronics, “TM sepic converter in PFC pre-regulator,” Application note. AN2435, 2007.
    [19] Texas Instruments, “TMS320F2803x DSPs Data Manual,” Datasheet, 2003.
    [20] Texas Instruments, “TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator,” Reference Guide, 2009.
    [21] Texas Instruments, “TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module,” Reference Guide, 2008.
    [22] Texas Instruments, “TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI),” Reference Guide, 2008.
    [23] Hewlett Packard, “2.0 Amp Output Current IGBT Gate Drive Optocoupler,” Datasheet, 2005.
    [24] LEM, “Current Transducer HX 03..50-P,” Datasheet, 2003.
    [25] Texas Instruments, “Designing DC/DC converters based on SEPIC topology,” Application Journal, 2008.
    [26] National Semiconductor, “Designing A SEPIC Converter,” Application Note 1484, 2008.
    [27] Y. K. Lo, Y. C. Liu, J. Y. Lin, C. Y. Li and S. J. Cheng, “Analysis and design of an active-clamping ZVS isolated inverse-SEPIC converter,” IEEE Power Electronics and Drive Systems, IEEE International Conf., pp. 1167-1172, 2009.

    無法下載圖示 全文公開日期 2016/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE