簡易檢索 / 詳目顯示

研究生: 張永翰
Yung-Han Chang
論文名稱: 氮化鎵之單端輸出振盪器及CMOS注入鎖定除二除頻器之研究
Feedback GaN HEMT Oscillators and CMOS Divide-by 2 Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng–Lyang Jang
口試委員: 黃進芳
Jhin-Fang Huang
徐敬文
Ching-Wen Hsue
賴文政
Wen-Cheng Lai
張勝良
Sheng–Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 163
中文關鍵詞: 氮化鎵除二振盪器除頻器CMOS
外文關鍵詞: GaN, Oscillators, CMOS, Divide-by 2, Dividers
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,PLL的特性非常重要,PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而為了追求低功耗,低相位雜訊,與較寬的除頻範圍,在這其中又以壓控振盪器和注入鎖定除頻器特性最重要,而本論文主要研製鎖相迴路之注入鎖定除頻器與壓控振盪器。

    首先,第一部分我們呈現一個迴授振盪器,由穩懋GaN0.25μm製程實現,本次振盪器包含了HEMT amplifier跟LC feedback,在工作偏壓1.8V,電流為10.18mA,總功率消耗為18.33mW,在頻率7.26GHz的相位雜訊為-122.48dBc/Hz,總晶片面積為2*1mm2,FOM為-187.0 dBc/Hz

    接著,第二部份我們呈現一個作用在X頻帶的迴授振盪器,由穩懋GaN0.25μm實現,本次振盪器包含了HEMT amplifier跟LC feedback,本次使用的電感為一個並接的電感,並接的電感與傳統的電感差別在於Q值與感值在高頻的時候都比傳統的電感來的好,本電路的工作偏壓為2V,電流為10.8mA,總功率消耗為21.6mW,在頻率8.82GHz的相位雜訊為-124.95dBc/Hz,總晶片面積為2*1mm2,FOM為-189.56 dBc/Hz。

    第三部份我們呈現一個寬頻除二注入鎖定除頻器,使用台積電0.18 μm製程來實現,此除頻器使用中央抽頭式電感與寄生電容產生負阻抗,並採用單端注入訊號來實現。在Vdd的調整下,高注入功耗下會有四個頻帶產生,形成一個較寬除頻範圍。在驅動偏壓為0.65 V、注入功率為0 dbm時,注入鎖定頻率為3.21 ~ 10 GHz,鎖住範圍共6.79 GHz,百分比為102.8 %。此晶片面積為0.55 × 1.027 mm2,除頻器的核心功耗共3.263 mW。

    最後我們呈現一個寬頻除二注入鎖定除頻器,使用台積電0.18 μm製程來實現,此除頻器在注入功耗為0 dBm時會有雙頻帶,在Vbias 等於0.75V注入功率為0 dbm時,中心頻率為7.94GHz,注入鎖定頻率為2.2 ~ 10.14 GHz,鎖住範圍共7.94 GHz,百分比為128..68 %。此晶片面積為0.785 × 0.883 mm2,除頻器的核心功耗共4.57 mW。


    Communication system is include Baseband, Intermediate Frequency and Radio Frequency. RF transceiver is also called RFIC, which is a general term for processing all high-frequency electromagnetic waves, typically includes a Transceiver, Low Noise Amplifier (LNA), Power Amplifier (PA), Band pass Filter (BPF),Synthesizer, Mixer, PLL. PLL circuit include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD), In order to achieve low-power, low phase noise and wide Locking range, are the most important in VCO and Divider. This thesis presents the design of Injection-Locked Frequency Dividers (ILFDs) and HEMT Oscillator.

    First, a feedback GaN HENT oscillator is using a standard 0.25 μm GaN HEMT technology. The die area is 2 × 1 mm2. The oscillator consists of a HENT amplifier with an LC feedback. The power consumption of the oscillator core is 10.18 mW and the oscillator can generate single-ended signal at 7.26GHz and it also supplies output power 1.06dBm.At 1MHz frequency offset from the carrier the phase noise is -122.48dBc/Hz.

    Secondly, A feedback GaN HEMT oscillator implemented with the WIN 0.25 μm GaN HEMT technology is designed. The oscillator consists of a HEMT amplifier with an LC feedback network. With the supply voltage of VDD = 2 V, the GaN VCO current and power consumption of the oscillator are 10.8 mA and 21.6mW, respectively. The oscillator can generate single-ended signal at 8.82 GHz and it also supplies output power 1.24 dBm. At 1MHz frequency offset from the carrier the phase noise is -124.95 dBc/Hz. The die area of the GaN HEMT oscillator is 2×1 mm2.
    Thirdly, a wide locking range divide-by-2 with capacitive cross-coupled injection-locked frequency divider (ILFD) implemented in the TSMC standard 0.18 μm CMOS process. The ILFD is based on a differential VCO with one injection MOSFET for coupling the external signal to the resonator and uses a center-tapped inductor and parasitic capacitor to form the resonator. The die area is 0.550×1.027 mm2. The ILFD has four non-overlapped locking ranges at high injection power around 7 dBm. It also has wide locking range while non-overlapped locking range disappears.

    Finally, a wide locking range divide-by-2 LC injection-locked frequency divider (ILFD) was implemented in the TSMC 0.18 um 1P6M CMOS process. The divide-by-2 ILFD targets for having two overlapped locking ranges at 0 dBm injection power. The 0.18 um 1P6M CMOS cross-coupled ILFD bases on a dual-resonance RLC resonator. At the drain-source bias of 0.75 V, and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is 7.94 GHz, from the incident frequency 2.2 to 10.14 GHz. At low injection power, the ILFD shows three non-overlapped locking ranges. The die area is 0.785 × 0.883 mm2.

    摘要 ㄧ Abstract 三 致謝 五 Table of Contents 六 List of Figures 九 List of Tables 一六 Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 6 2.1 Introduction 6 2.2 The Oscillators Theory 8 2.2.1 Feedback Oscillators 8 2.2.2 Resonator and Negative Resistance 11 2.3 The Classification of Oscillators 15 2.3.1 Ring Oscillator 15 2.3.2 LC-Tank Oscillator 22 2.4 Passive Components Design in VCO 36 2.4.1 Capacitor Design 36 2.4.2 Varactor Design 38 2.4.3 Inductor Design 45 2.4.4 Transformer Design 49 2.4.5 Resistor Design 58 2.5 The Basic parameters of VCO 59 2.5.1 RF Center Frequency [Hz] 59 2.5.2 RF Output Signal Power [dBm] 59 2.5.3 Power Dissipation [mW] 60 2.5.4 Harmonic/spurious [dBc] 60 2.5.5 Phase Noise 60 2.5.6 Tuning Range 64 2.5.7 Tuning Sensitivity [Hz/V] 66 2.5.8 Tuning Linearity 66 2.5.9 Quality Factor 67 2.5.10 Figure of Merit [dBc/Hz] 70 Chapter 3 Design of Injection Locked Frequency Divider 71 3.1 Principle of Injection Locked Frequency Divider 73 3.2 Injection Locking 75 3.3 Noise in ILOs 76 3.4 Locking Range 78 3.5 Model of ILFD General Case 81 Chapter 4 Principles and Appliance of Gallium Nitride 83 4.1 Introduction 83 4.2 Advantages and applications of GaN 85 Chapter 5 A Feedback GaN HEMT Oscillator 88 5.1 Introduction 88 5.2 Circuit Design 90 5.3 Measurement Results 93 Chapter 6 An X-Band Feedback GaN HEMT Oscillator 99 6.1 Introduction 99 6.2 Circuit Design 101 6.3 Measurement Results 104 Chapter 7 Multi-Band Locking Ranges in Divide-by-2 Injection-Locked Frequency Divider with One-chip Inductor 110 7.1 Introduction 110 7.2 Circuit Design 112 7.3 Measurement Results 114 Chapter 8 On-Chip Inductor Used as Distributed Resonator in Divide-by-2 Injection-Locked Frequency Divider 119 8.1 Introduction 119 8.2 Circuit Design 121 8.3 Measurement Results 123 Chapter 9 Conclusions 132 References 1

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] Chuanzhao Yu “Study Of Nanoscale Cmos Device And Circuit Reliability”,2016
    [3] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [4] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [5] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
    [6] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [7] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [8] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [9] S.J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [10] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall, 1997.
    [11] 劉隽宇, 翁若敏, 運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器, 2005.07.
    [12] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [13] A. Hajimiri, and T. H. Lee, The design of low noise oscillators, Kluwer Academic Publishers, 1999.
    [14] B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise up-conversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [15] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise up-conversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
    [16] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits”, Cambridge University Press 1998.
    [17] J. Craninckx; M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol: 32,pp.736-744,1997.
    [18] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [19] C. P. Yue; C. Ryu; J. Lau; T. H. Lee; S. S. Wong,” A physical model for planar spiral inductors on silicon,” International Electron Devices Meeting. Technical Digest , pp.155-158,1996
    [20] Kenichi Okada and Kazuya Masu, “Modeling of Spiral Inductors,” Advanced Microwave Circuits and System, Vitaliy Zhurbenko (Ed.), InTech, 2010.
    [21] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [22] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [23] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [24] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [25] http://faculty.engineering.villanova.edu/rcaverly/inductor1.pdf
    [26] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [27] JOHNS & MARTIN,” Analog Integrated Circuit Design”
    [28] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [29] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
    [30] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [31] Sangwoong Yoon, “LC-tank CMOS Voltage-Controlled Oscillators using High Quality Inductors Embedded in Advanced Packaging Technologies”
    [32] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [33] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [34] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
    [35] S.-L. Jang,C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
    [36] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [37] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [38] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [39] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [40] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [41] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [42] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [43] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [44] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [45] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech. vol. 55, issue 1, pp. 23-29,2007.
    [46] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher and I. Kallfass, "A 67 GHz GaN voltage controlled oscillator MMIC with high output power," IEEE Microw. Wireless Compon. Lett., vol. 23, pp. 374–376, Jul. 2013.
    [47] Rainer Weber, Dirk Schwantuschke, Peter Bruckner, Rudiger Quay, Friedbert van Raay, and Oliver Ambache, " A 92 GHz GaN HEMT voltage-controlled oscillator MMIC," 2014 IEEE MTT-S International Microwave Symposium (IMS2014).
    [48] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T.R.Prunty, L.F.Eastman, andJ. R.Shealy,“High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
    [49] X. Lan, M. Wojtowicz, I. Smorchkova, R. Coffie, R. Tsai, B. Heying, M. Truong, F. Fong, M. Kintis, C. Namba, A. Oki and T. Wong, "A Q-band low phase noise monolithic AlGaN/GaN HEMT VCO," IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 425–427, Jul. 2006.
    [50] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 407–409, Jun. 2008.
    [51] H. Chen, X. Wang, X. Chen, L. Pang, W. Luo, B. Li, and X. Liu, "A high power C-band AlGaN/GaN HEMT MMIC VCO," 2013 Int. Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST).
    [52] V. Kaper, R. Thompson, T. Prunty, and J. R. Shealy, "X-band AlGaN/GaN HEMT MMIC voltage-controlled oscillator," 11th GAAS Symposium - Munich 2003
    [53] Hang Liu, Xi Zhu, Chirn Chye Boon, Xiang Yi, Mengda Mao, and Wanlan Yang, “Design of ultra-Low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [54] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 463–465, Jul. 2005.
    [55] T. Ngoc Thi Do, S. Lai, M. Hörberg, H. Zirath, and D. Kuylenstierna, “A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise,” 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
    [56] S. Lai, D. Kuylenstierna, M. Hörberg, N. Rorsman, I. Angelov, K. Andersson, H. Zirath, “Accurate phase noise prediction for a balanced Colpitts GaN HEMT MMIC oscillator,” IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3916-3926, Nov., 2013.
    [57] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014.
    [58] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,”2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [59] 穩懋有限公司,GaN25_Technology_Introduction,2017.8.25
    [60] 宜普有限公司, What is GaN (http://epc-co.com/epc/tw)
    [61] 宜普有限公司, 氮化鎵(GaN)何去何從? (http://epc-co.com/epc/tw)
    [62] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech. vol. 55, issue 1, pp. 23-29,2007.
    [63] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher and I. Kallfass, "A 67 GHz GaN voltage controlled oscillator MMIC with high output power," IEEE Microw. Wireless Compon. Lett., vol. 23, pp. 374–376, Jul. 2013.
    [64] Rainer Weber, Dirk Schwantuschke, Peter Bruckner, Rudiger Quay, Friedbert van Raay, and Oliver Ambache, " A 92 GHz GaN HEMT voltage-controlled oscillator MMIC," 2014 IEEE MTT-S International Microwave Symposium (IMS2014).
    [65] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T.R.Prunty, L.F.Eastman, andJ. R.Shealy,“High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
    [66] X. Lan, M. Wojtowicz, I. Smorchkova, R. Coffie, R. Tsai, B. Heying, M. Truong, F. Fong, M. Kintis, C. Namba, A. Oki and T. Wong, "A Q-band low phase noise monolithic AlGaN/GaN HEMT VCO," IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 425–427, Jul. 2006.
    [67] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 407–409, Jun. 2008.
    [68] H. Chen, X. Wang, X. Chen, L. Pang, W. Luo, B. Li, and X. Liu, "A high power C-band AlGaN/GaN HEMT MMIC VCO," 2013 Int. Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST).
    [69] V. Kaper, R. Thompson, T. Prunty, and J. R. Shealy, "X-band AlGaN/GaN HEMT MMIC voltage-controlled oscillator," 11th GAAS Symposium - Munich 2003
    [70] Hang Liu, Xi Zhu, Chirn Chye Boon, Xiang Yi, Mengda Mao, and Wanlan Yang, “Design of ultra-Low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [71] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 463–465, Jul. 2005.
    [72] T. Ngoc Thi Do, S. Lai, M. Hörberg, H. Zirath, and D. Kuylenstierna, “A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise,” 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS),
    [73] S. Lai, D. Kuylenstierna, M. Hörberg, N. Rorsman, I. Angelov, K. Andersson, H. Zirath, “Accurate phase noise prediction for a balanced Colpitts GaN HEMT MMIC oscillator,” IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3916-3926, Nov., 2013
    [74] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014. .
    [75] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,”2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [76] S.-L. Jang and Y.–C. Lin,”Low power three-path inductor Class-C VCO without any dynamic bias circuit,” Electronics Chapters , 2017.
    [77] Fan-Hsiu Huang; Guan-Ting Lee; Hsien-Chin Chiu ”A low phase noise quadrature ring oscillator using 0.5µm GaN-on-Si HEMT”, European Microwave Conference, 2013, pp. 1499–1502
    [78] S. Kim; H. Kim; S. Shin; J. Kim; B. Kim; J. Choi ”Combined power oscillator using GaN HEMT”. IEEE MTT-S International Microwave Symposium,2011, pp. 1–1
    [79] Tianming Feng; Jebreel M. Salem; Dong Sam Ha,” High temperature VCO based on GaN devices for downhole communications”. IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-4
    [80] A. P. M. Maas and F. E. van Vliet,” A low-noise X-band microstrip VCO with 2.5 GHz tuning range using a GaN-on-SiC p-HEMT,” European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, pp. 257–260
    [81] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [82] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
    [83] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
    [84] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [85] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
    [86] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J. F. Huang, "Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [87] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Chapters ,vol. 51, no. 23, 05, p. 1888 – 1889. Nov 2015.
    [88] S.-L. Jang, S.-J. Jian and C.-W. Hsue," Wide-band divide-by-4 injection-locked frequency divider using harmonic mixer," IEEE Microw. Wireless Compon. Lett., accepted, 2017.
    [89] S.-L. Jang, Y.-L. Ciou and W.-C. Lai , ”Wide-band triple-resonance divide-by-4 injection-locked frequency divider,” IEEE Int. Microwave Symposium (IMS 2017).
    [90] S.-L. Jang,W.-C. Cheng and C.-W. Hsue, ” A triple-resonance RLC-tank divide-by-2 injection-Locked frequency divider,” Electron. Lett., Vol. 52 No. 8 pp. 624–626, 2016.
    [91] S.-L. Jang,W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
    [92] S.-L. Jang, C.-M. Chang and M.-H. Juang, ” Divide-by-2 injection-locked frequency divider implemented with two shunt 4th-order LC resonators,” Analog Integr Circ Sig Process, vol. 91, no. 3, pp 377–383, June 2017.
    [93] Y. Cao, R. Groves, X. Huang, N. Zamdmer, J. Plouchart, R. Wachnik, T. King, and C. Hu, “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 419–426, Mar. 2003.
    [94] H. Wang, L. Sun, J. Liu, H. Zou, Z. Yu, and J. Gao, “Transfer function analysis and broadband scalable model for on-chip spiral inductors,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1696–1708, Jul. 2011
    [95] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [96] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
    [97] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
    [98] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [99] S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 43, pp. 2081–2088,. 2015.
    [100] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [101] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
    [102] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [103] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
    [104] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
    [105] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [106] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [107] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, " Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, pp.1-4, 2011.
    [108] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
    [109] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
    [110] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [111] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
    [112] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [113] S.-L. Jang, F.-B. Lin and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
    [114] Ji-Shin Chiou” Chip in GaN HEMT Oscillator(GaN25-106A-A0007)”
    [115] Fheng-Wei Chen,” Chip in Divide-by-2 Injection-Locked Frequency Divider(T18-104A-E0115)”
    [116] Jheng-Wei Jhuang, “Chip in Divide-by-2 Injection-Locked Frequency Divider(T18-104B-E0056)”

    無法下載圖示 全文公開日期 2023/01/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE