簡易檢索 / 詳目顯示

研究生: 鍾孟書
Meng-Shu Chung
論文名稱: 使用10.52-GHz多相位鎖相迴路之2.97皮秒解析度時間至數位轉換器
A 2.97-ps Resolution TDC Using a 10.52-GHz Multi-Phase PLL
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 117
中文關鍵詞: 時間至數位轉換器鎖相迴路壓控環形震盪器相位內插器
外文關鍵詞: Time-to-Digital Converter, Phase-Locked Loop, Voltage Controlled Ring Oscillator, Phase Interpolator
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個具有2.97 ps時間解析度且量測範圍達389 ns之時間至數位轉換器(Time-to-Digital Converter, TDC),TDC以計數器法實現。系統使用多相位之鎖相迴路(Phase-Locked Loop, PLL)提供高頻時脈,並透過相位內插之技巧以提高時間解析度,輸出結果為18位元之數位訊號供FPGA讀取。
    鎖相迴路之輸出頻率可為10.24 GHz ~ 10.52 GHz,透過壓控環形震盪器(Voltage-Controlled Ring Oscillator, VCRO)產生8個相位的輸出,經由相位內插器(Phase Interpolator, PI)產生32個相位以提供TDC當作計數時脈。TDC將輸入的時間差透過32個12位元的計數器來計數脈波週期個數,最後透過數位邏輯電路以及FPGA交握電路輸出加總結果。
    本晶片採用TSMC 90nm 1P9M CMOS製程來實現,除了數位邏輯電路以及FPGA交握電路透過Cell-Based設計流程來完成外,其餘電路包括鎖相迴路之相位頻率偵測器、充放電泵電路、壓控環形振盪器、自偏壓緩衝器、電流模式邏輯除法器、差動轉單端電路、脈波吞噬型除頻器以及TDC之相位內插器、控制電路、開關電路、栓鎖電路、計數器電路等皆採用Full-Custom設計流程實現。PLL參考時脈為20 MHz,FPGA交握電路操作時脈為10 MHz,在PLL輸出頻率為10.24 GHz ~ 10.52 GHz下TDC的時間解析度為2.97 ps ~ 3.05 ps,量測範圍達389 ns ~ 400 ns,系統功率消耗為200.6 mW,晶片面積約為1.527 mm^2。


    A time-to-digital converter (TDC) with a time resolution of 2.97 ps and a detect range of 389 ns is proposed in this thesis. The TDC is implemented by using the counter method. The system uses a multi-phase phase-locked loop (PLL) to provide high-frequency clock, and uses phase interpolation techniques to improve time resolution. The output result is an 18-bit word.
    The output frequency of the PLL is from 10.24 GHz to 10.52 GHz. The PLL generates 8-phase outputs through the voltage-controlled ring oscillator (VCRO). They are interpolated into 32-phase signals. These signals are clock signals for 32 sub-TDCs. Each sub-TDC counts the number of clock cycles through a 12-bit counter to measure the input time difference. The 32 sub-TDC outputs are interpreted as a high resolution time difference through a dedicated digital logic circuit.
    The TDC chip was fabricated in TSMC 90nm 1P9M CMOS process. The digital logic circuit and the FPGA handshaking circuit were implemented by the Cell-Based design flow, the other part of the chip including the PFD, CP, VCRO, Buffer, CMLD, DTS, PSD in PLL and phase interpolator, control circuit, switches, latches, counters in TDC were implemented by the Full-Custom design flow. The reference clock of the PLL is 20 MHz, the operating frequency of the FPGA handshaking circuit is 10 MHz. The time resolution of the TDC is from 2.97 ps to 3.05 ps and the detectable range is from 389 ns to 400 ns. The total power consumption is 200.6 mW. The chip area is around 1.527 mm^2.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言與研究背景 1 1.2 研究動機 2 1.3 研究方法與工具 3 1.4 論文架構 3 第二章 時間至數位轉換器 4 2.1時間至數位轉換器應用 4 2.2時間至數位轉換器簡介 5 2.2.1 計數器法[4] 5 2.2.2 脈衝寬度拓展法[5] 6 2.2.3 脈衝縮減延遲法[6] 8 2.2.4 以FPGA為主體的時間至數位轉換器[7] 10 2.2.5 傳統游標卡尺法[8] 12 2.2.6改良式游標卡尺法[14] 14 2.3 各類型時間至數位轉換器比較 16 第三章 鎖相迴路 17 3.1 鎖相迴路的歷史演進[15] 17 3.2 鎖相迴路架構介紹[16] 18 3.2.1 相位頻率偵測器 18 3.2.2 充電泵與一階迴路濾波器 21 3.2.3 PFD與充電泵的非理想效應 24 3.2.4 二階迴路濾波器的參數計算 27 3.2.5 電壓控制振盪器 28 3.2.6 線性振盪器模型 29 3.2.7 除頻器 30 3.3 鎖相迴路分析[16] 31 3.3.1 鎖相迴路的迴路分析 31 3.3.2 迴路頻寬與穩定性分析 32 第四章 系統電路設計與模擬結果 35 4.1 系統架構 35 4.2 鎖相迴路設計 37 4.2.1 相位頻率偵測器(Phase Frequency Detector, PFD) 37 4.2.2 充電泵(Charge Pump, CP) 40 4.2.3 二階迴路濾波器(2nd Order Loop Filter) 45 4.2.4 壓控環形震盪器(Voltage-Controlled Ring Oscillator, VCRO) 47 4.2.5 自偏壓緩衝器(Self-Bias Buffer) 51 4.2.6 電流模式邏輯除法器(Current Mode Logic Divider, CMLD) 52 4.2.7 差動轉單端電路(Differential to Single-ended Circuit, DTS) 53 4.2.8 脈波吞噬型除頻器(Pulse-Swallow Divider, PSD) 54 4.3鎖相迴路系統模擬 56 4.4 時間至數位轉換器 61 4.4.1 相位內插器(Phase Interpolator, PI) 61 4.4.2 TDC控制電路與計數電路設計 63 4.4.3 邏輯運算電路與FPGA交握電路 66 4.5 全系統後模擬 68 4.5.1 PLL及TDC合併之Full-Custom系統後模擬結果 68 4.5.2 TDC Cell-Based Block後模擬結果 70 第五章 下線實作與量測 76 5.1 晶片設計流程 76 5.2 晶片佈局規劃 77 5.3 量測環境介紹與PCB設計 78 5.4 量測結果與討論 83 5.5 文獻比較 95 第六章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 97 參考文獻 98

    [1] Maatta, J. Kostamovaara, M. Koskinen, and R. Myllyla, “Time-to-digital converter for fast, accurate laser range finding,” in Proc. SPIE Industrial Inspection, Sept. 1988, vol. 1010, pp. 60-67.
    [2] M. A. Gruntman, “MASTIF: Mass analysis of secondaries by time-offlight technique. A new approach to secondary ion mass spectrometry,” Rev. Sci. Instrum., vol. 60, no. 10, pp. 3188–3193, Oct. 1989.
    [3] P. Chen, C.-C. Chen, C.-C. Tsai, and W.-F. Lu, ”A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642 -1648, Aug. 2005.
    [4] R. Nutt, “Digital time intervalometer,” Rev. Sci. Instrum., vol. 39, no. 9, pp. 1342-1345, 1968.
    [5] P. Chen, C.-C. Chen and Y. S. Shen, “A low-cost low-power CMOS time-to-digital converter based on pulse stretching”, IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 4, pp. 2215 -2220.
    [6] P. Chen, S.-I. Liu, and J. Wu, “Highly accurate cyclic CMOS time-to-digital converter with extremely low power consumption,” Electron. Lett., vol. 33, no. 10, pp. 858–860, May 1997.
    [7] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, “Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution,” IEEE Trans. Instrum. Meas., vol. 46, no. 1, pp. 51–55, Feb. 1997.
    [8] S. Szczepnski, P. Dudek, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240–247, Feb. 2000.
    [9] K. Park and J. Park, “20 ps resolution time-to-digital converter for digital storage oscilloscopes,” in Proc. IEEE Nuclear Science Symp., pp. 876-881, 1998.
    [10] J. Nissinen, P. Palojarvi, and J. Kostamovaara, “A CMOS receiver for a pulsed time-of-flight laser rangefinder,” in Proc. European Solid-State Circuits Confer., pp. 325-328, 2003.
    [11] C. C. Tsai and C. L. Lee,” An on-chip jitter measurement circuit for the PLL,” in Proc. IEEE 12th Asian Test Symposium, pp. 108-111, 2003.
    [12] T. Xia, H. Zheng, J. Li and G. A,” Self-refereed on-chip jitter measurement circuit using Vernier oscillators,” in Proc. IEEE Computer Society Annual Symp., pp. 218-223, 2005.
    [13] S. Ali, G. Briggs and M. Margala, “A high frequency, low jitter auto-calibration phase-locked loop with built-in-self-test” IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 246-254, 2005.
    [14] 劉亭君,具數位校準之時間至數位轉換器,碩士論文,國立台灣科技大學, 2008。
    [15] 吳華祥,下世代RFID系統之鎖相迴路初步研究,碩士論文,國立台灣科技大學,2010。
    [16] 劉深淵,楊清淵,鎖相迴路,滄海書局,2006。
    [17] S. Kim, K. Lee, Y. Moon, D. -K. Jeong, Y. Choi, and H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691–700, May 1997.
    [18] I.-H. Lin, C.-L. Ti, and Y.-H. Liu, “Dynamic current-matching charge pump and gated-offset linearization technique for delta-sigma fractional-N PLLs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 877-885, May 2009.
    [19] S.-J. Lee, B. Kim, and K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed-delay scheme,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 289–291, Feb. 1997.
    [20] Y. A. Eken and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 230–233, Jan. 2004.
    [21] U. Singh and M. M. Green, “High-frequency CML clock dividers in 0.13 μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658–1661, Aug. 2005.
    [22] J. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, pp. 1723–1732, Nov. 1996.
    [23] S. Henzler, S. Koeppe, W. Kamp, H. Mulatz, and D. Schmitt-Landsiedel, “90 nm 4.7 ps-resolution 0.7-LSB single-shot precision and 19 pJ-per-shot local passive interpolation time-to-digital converter with on-chip characterization,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 548–549.
    [24] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989.
    [25] 林亞毅,高精度時域類比至數位轉換器,碩士論文,國立台灣科技大學, 2010。
    [26] N. Narku-Tetteh, A. Titriku and S. Palermo, “A 15b, Sub-10ps resolution, low dead time, wide range two-stage TDC,” 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, 2014, pp. 13-16.
    [27] P. Keränen and J. Kostamovaara, “A wide range, 4.2 ps(rms) precision CMOS TDC with cyclic interpolators based on switched-frequency ring oscillators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 12, pp. 2795–2805, Dec. 2015.
    [28] J. Wu, P. Zhang, S. Shi, L. Zheng, and W. Sun, “A Wide Dynamic Range and Low Bit Error Pixel TDC Suitable for Array Application,” IEEE Trans. Circuits Syst., Ⅱ, Exp. Briefs, vol. 66, no. 11, pp. 1805-1809, Nov. 2019.
    [29] P. Chen, J. Lan, R. Wang, N. M. Qui, J. C. J. S. Marquez, S. Kajihara, and Yousuke Miyake, “High-Precision PLL Delay Matrix With Overclocking and Double Data Rate for Accurate FPGA Time-to-Digital Converters,” IEEE Tran. on Very Large Scale Integr. (VLSI) Syst., Early Access Article, 2020.

    [30] S. J. Kim, W. Kim, M. Song, J. Kim, T. Kim, and H. Park, “A 0.6 V 1.17ps PVT-tolerant and synthesizable time-to-digital converter using stochastic phase interpolation with 16× spatial redundancy in 14 nm FinFET technology,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 1–3.
    [31] Z. Cheng, M. J. Deen, and H. Peng, “A low-power gateable Vernier ring oscillator time-to-digital converter for biomedical imaging applications,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 2, pp. 445–454, Apr. 2016.
    [32] T. Wang, John W. M. Rogers, and K. Mitric, “Analysis and Correction of Noise Injection Due to Parallel-Output-Misalignment (POM) Effects in Ring-Type Time-to-Digital Converters (TDCs),” IEEE J. Solid-State Circuits, Vol. 54, pp. 2513-2522, 2019.
    [33] F. Yuan, CMOS Time-Mode Circuits and Systems: Fundamentals and Applications. New York: CRC Press, 2015.
    [34] 溫鈺柔,游標卡尺法時間至數位轉換器及其在室內RFID系統中距離量測上的應用,碩士論文,國立台灣科技大學,2013。
    [35] 黃楚陽,5.6-GHz 全數位式鎖相迴路頻率合成器,碩士論文,國立台灣科技大學,2018。

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE