簡易檢索 / 詳目顯示

研究生: 楊子慶
Tzu-Chin Yang
論文名稱: 氮化鎵製程左手傳輸振盪器 及注入鎖定除二/除八除頻器之研究
GaN25 Left-Hand Transmission Oscillator and Divide-by-2 and 8 Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
莊敏宏
Miin-Horng Juang
賴文政
Wen Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 156
中文關鍵詞: 注入鎖定除頻器鎖相迴路射頻積體電路壓控振盪器
外文關鍵詞: PLL, ILFD, VCO, RF
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著無線通訊系統快速發展,各種頻率合成器被研發出來,又以單晶片系統(System-On-Chip)為主要趨勢。在整合各系統子電路時常出線操作時脈相位不同的情況,而導致輸出資料錯誤,因此需要鎖相迴路(Phase-Locked-Loop, PLL)來減少相位偏差,使得整合系統中各個子電路的時脈相位一致,減少輸出偏差。其內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而上述之中以壓控振盪器與除頻器為核心電路,因此本論文研究提出一氮化鎵製程之壓控振盪器與二種不同的除頻器。

    首先,我們探討一個使用台積電CMOS 0.18微米製程之寬除頻範圍除四/除八注入鎖定除頻器。此除頻器使用CML (current-mode logic) 除二除頻器疊接使用電容交叉耦合式之除二/四注入鎖定除頻器所構成; CML則為在flip-flop啟用上緣clock輸出切換到輸入,以致於輸出頻率為輸入的一半;隨著更小的負載,CML具有較小的RC延遲,但需要提高電壓來補償下降的迴路增益,做為功耗與延遲之tradeoff。因此使用疊接ILFD和CML,直流和交流電流可以更有效使用。疊接的除頻器在不同的操作中選擇適當的頻率並以適度的直流消耗實現適度的頻帶寬。而除二/四除頻器做為線性混波器之用。在除4功能運作之下,功率消耗為7.26mW,注入訊號強度為0dBm,鎖定頻率範圍從5.5 GHz到10.5 GHz; 而在除8功能運作之下,功率消耗為8.17mW,注入訊號強度為0 dBm,鎖定頻率範圍從15.5 GHz到17.8 GHz,晶片面積為0.8044×0.72 mm2。

    第二部分,本篇提出一個使用台積電CMOS 0.18微米製程之使用3維多層路徑串聯單一路徑電感結合交叉電合寬頻注入式除二鎖定除頻器。在注入功率為0 dBm 與2.58 mW功耗之下,鎖定頻率範圍從2.8 GHz到8.4 GHz,最高的FOM可以達到38.76,此電路之晶片面積為0.4446×0.9198 mm2。

    最後,本篇提出一個使用穩懋0.25微米製程,來呈現一個使用HEMT之左手傳輸振盪器。1.6V供應電壓下,此輸出電路在2V之Buffer電壓能夠產生差分輸出信號3.818GHz並能夠輸出2.86dBm的輸出功率。在1MHz時候之相位雜訊為-131.73 dBc/Hz,計算所得到的FoM為-188.4 dBc/Hz,此電路的面積為2×1mm2。


    Recently, various frequency synthesizers have been developed with the rapid development of wireless communication systems in which SOC (System-On-Chip) is the main trend of them. When integrating the sub-circuits in system, there are phase errors or clock skews which generate asynchronous phenomenon in different sub-circuit blocks that causing output data error started up. Therefore, we need a Phase-Locked-Loop (PLL) for reducing the phase and clock error to decrease the output data error. In the Frequency synthesizer, its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). Among of them, the Voltage Controlled Oscillator and Frequency Divider are the main circuit, so this thesis proposed the design GaN HEMT oscillator and two different of Injection-Locked Frequency Dividers (ILFDs).

    First, this thesis study using a TSMC CMOS 0.18 μm technology to achieve a wide locking range of Injection-Locked Frequency Divider divide-by-4 or 8. This frequency divider uses divide-by-2 current-mode logic (CML) stacked on capacitive cross-coupled oscillator used as an LC divide-by-2 or 4 ILFD. CML switches the output to the input based on flip-flop upper edge clock so that the output frequency is half of the input; with smaller loads, CML has a smaller RC delay, but needs to increase the voltage to compensate for the falling loop gain as a tradeoff for power consumption and delay. Therefore, using stacked ILFD and CML, DC and AC current can be used more efficiently. The frequency divider can select the appropriate frequency in different operations and achieves a moderate frequency bandwidth with moderate DC consumption. Injection MOSFET in ÷2 and ÷4 frequency divider are used as linear mixers. In divided by 4, the power consumption is 7.26mW at the injection power 0dBm, the frequency divider has a locking range from 5.5 GHz to 10.5 GHz. And in divided-by-8 mode, the power consumption is 8.17 mW at the injection power 0dBm, the frequency divider has a locking range from 15.5 GHz to 17.8 GHz. This chip area of circuit is 0.8044×0.72 mm2.

    Secondly, this research proposes a three-dimensional inductor consisted of 3 series single-path and multi-path inductors combined with a cross-capacitance coupling divide by 2 injection locked frequency divider by using a TSMC 0.18 μm CMOS technology. At the power consumption of 2.58 mW and at the input power of 0 dBm, the locking range is from 2.8 to 8.4 GHz, and the highest FOM can reach 38.76. The chip size is 0.4446 × 0.9198 mm2.

    Finally, this thesis design a 0.25 μm GaN HEMT Oscillator with Left-Handed Transmission Filter. With the supply voltage of VDD = 1.6 V, this oscillator can generate differential signal at 3.818 GHz and it also supplies output power 2.86 dBm with buffer supply 3.0 V. At 1 MHz frequency offset from the carrier the phase noise is -131.73 dBc/Hz, and the FoM of the proposed oscillator is -188.4 dBc/Hz. The die area of the GaN HEMT oscillator is 2 × 1 mm2.

    Table of Contents 中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures VIII List of Tables XVI Chapter 1 Introduction 17 1.1 Background 17 1.2 Thesis Organization 20 Chapter 2 Overview of Voltage-Controlled Oscillators 21 2.1 Introduction 21 2.2 The Oscillators Theory 23 2.2.1 Negative Resistance (One-Port) View 24 2.2.2 Feedback (Two-Port) View 27 2.3 Design Concepts of Voltage-Controlled Oscillator 29 2.3.1 Parameters of a Voltage-Controlled Oscillator 29 2.3.2 Phase Noise 33 2.3.3 Quality Factor 45 2.4 Classification of Oscillators 49 2.4.1 Ring Oscillator 49 2.4.2 LC-Tank Oscillator 54 2.5 Type of the LC Oscillator 58 2.5.1 Single Transistor Oscillator 59 2.5.2 One-Port Oscillator (Negative-Gm Oscillator) 62 2.5.3 Cross-Coupled Oscillator 67 2.6 Research in RLC-Tank 72 2.6.1 Resistors 73 2.6.2 Inductor 74 2.6.3 Transformer 84 2.6.4 Capacitor 89 2.6.5 Varactors 91 Chapter 3 Overview of Injection Locking Frequency Divider 95 3.1 Introduction 95 3.2 Principle of Injection Locked Frequency Divider 96 3.3 Locking Range 98 Chapter 4 Capacitive Cross-Coupled Divide-by-8 Injection-Locked Frequency Divider 101 4.1 Introduction 101 4.2 Circuit Design 104 4.3 Measurement and Discussion 109 Chapter 5 Divide-by-2 Injection-Locked Frequency Divider with Hybrid 3-D Multi-Path Inductor and Single-path Inductor 121 5.1 Introduction 121 5.2 Circuit Design 122 5.3 Measurement and Discussion 126 Chapter 6 Balanced GaN HEMT Oscillator with Left-Handed Transmission Filter 132 6.1 Introduction 132 6.2 Detailed Circuit Design 133 6.3 Measurement and Discussion 138 Chapter 7 Conclusions 146 References 148

    References
    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [6] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [7] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [8] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 2008.
    [9] G. Gonzalez , Microwave Transistor Amplifiers Analysis And Design, Prentice Hall, 1997.
    [10] 劉隽宇, 翁若敏, 運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器, 2005.07.
    [11] De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [12] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002.
    [13] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press, 1998.
    [14] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [15] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
    [16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [17] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [18] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [19] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [20] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [21] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [22] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shin, “Dual resonance LC-tank frequency divider implemented with switched varactor bias,” in Proc. IEEE Int. Symp. VLSI Design, Autom. Test, Apr. 2011, pp. 1–4.
    [23] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [24] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [25] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [26] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [27] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [28] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [29] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [30] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [31] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [32] S. Ann, J. Yu, J. Park, Y. Kim, N. Kim, "Low power CMOS 8:1 injection-locked frequency divider with LC cross-coupled oscillator,” IEEE European Modelling Symp. (EMS) pp.439-442, 2015.
    [33] R. Shu, V. Subramanian, and G. Boeck, “A 8:1 static frequency divider operating up to 34 GHz in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Sep. 2011, pp. 17–20, Workshop Ser. Millim. Wave Integration Technol
    [34] S. Cheng, H. Tong, J. S. Martinez and A. I. Karsilayan “A fully differential low-power divide-by-8 injection-locked frequency divider up to 18 GHz,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 583-591, Mar. 2007.
    [35] Z. Griffith, M. Urteaga, R. Pierson, P. Rowell, M. Rodwell, and B. Brar," A 204.8 GHz static divide-by-8 frequency divider in 250 nm InP HBT," 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
    [36] A. Musa et al., “Progressive mixing technique to widen the locking range of division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161–1173, Mar. 2013.
    [37] A. Musa, K. Okada, and A. Matsuzawa, “A 20 GHz ILFD with locking range of 31% for divide-by-4 and 15% for divide-by-8 using progressive mixing,” in IEEE Asian Solid-State Circuits Conf. Tech. Dig., pp. 85–88, Nov. 2011.
    [38] Y. S. Lin, W. H. Huang, C. L. Lu, and Y. H. Wang, “Wide-locking range multi-phase-outputs regenerative frequency dividers using even harmonic mixers and CML loop dividers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3065–3075, Dec. 2014.
    [39] S.-L. Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,” Electron lett .,vol. 50, 23, pp.1710-1712, 2014.
    [40] S.-L.Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
    [41] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
    [42] K. Yamamoto and M. Fujishima, “70 GHz harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 600–60 .
    [43] S.-L. Jang, S.-J. Jian and C.-W. Hsue," Wide-band divide-by-4 injection-locked frequency divider using harmonic mixer," IEEE Microw. Wireless Compon. Lett., 924-926, Oct. 2017.
    [44] S.-L. Jang, T.-C. Kung and C.-W. Hsue," Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp.398-400, 2017.
    [45] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2477–2485, Oct. 2011.
    [46] M. Acar, D. Leenaerts, and B. Nauta, “A wideband CMOS injection locked frequency divider,” in IEEE Radio Freq. Integr. Circuits Symp.Dig., Jun. 2004, pp. 211–214.
    [47] F. H. Huang, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” in Proc. Radio Frequency Integrated Circuits Symp., 2005, pp. 469–472.
    [48] Wen Cheng Lai, S.-L. Jang, and M.-Y. Fang,” Small die area capacitive cross-coupled injection-locked frequency divider,” The 2nd Int. Conference on Integrated Circuits and Microsystems, (ICICM 2017).
    [49] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang,”Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. on Electronics., Vol.E91-C,No.6, pp.956-962, Jun. 2008.
    [50] S.-L. Jang, M.-H. Suchen, and C.-F. Lee, ”Colpitts injection locked frequency divider implemented with a 3D helical transformer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp.410-412, June, 2008.
    [51] S.-L. Jang, C.-C. Liu and C.-W. Tai, ”Implementation of 6-port 3D transformer in injection-locked frequency divider,” IEEE Int. VLSI- DAT, 2009.
    [52] S.-L. Jang, and Y.–C. Lin, ” Low power three-path Inductor class-C VCO without any dynamic bias circuit,” Electron. Letts , vol. 53, 1186 - 1188 2017.
    [53] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
    [54] W. Z. Chen, W. H. Chen and K. C. Hsu, “Three-dimensional fully symmetric inductors, transformer, and balun in CMOS technology,” IEEE Trans. Circuits and Systems I: Regular Papers, vol.54, no.7, pp.1413-1423, Jul. 2007.
    [55] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electron. Lett., vol. 51, 23, pp.1888-1889, 2015.
    [56] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, ” Triple-resonance RLC-tank divide-by-2 injection-Locked frequency divider,” Electron. Lett., Vol. 52 No. 8 pp. 624–626, 2016.
    [57] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [58] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [59] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006
    [60] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol.55, 10, pp. 2333–2337, Oct. 2013.2009.
    [61] S.-L.Jang, ” Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,”Analog Integr Circ Sig Process., vol. 85, no.2, pp 335-341, Nov.,2015.
    [62] S.-L. Jang, C.-M. Chang and M.-H. Juang, ” Divide-by-2 injection-locked frequency divider implemented with two shunt 4th-order LC resonators,” Analog Integr Circ Sig Process, published online, 2017.
    [63] A. Balandin, S. V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne and C. R. Viswanathan, “Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications, ” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 8, pp. 1413-1417, Aug. 1999.
    [64] M. Hörberg, and D. Kuylenstierna,“Low phase noise power-efficient MMIC GaN-HEMT oscillator at 15 GHz based on a quasi-lumped on-chip resonator,” IEEE 2015.
    [65] S.–L. Jang, Y.-H. Chang, and Wen Cheng Lai,” A feedback GaN HEMT oscillator,” (ICIMMT 2018) Chengdu, Sichuan, China, May 6-9, 2018.
    [66] S.–L. Jang, Y.-H. Chang, J.-S. Chiou and Wen Cheng Lai, “A single GaN HEMT oscillator with 4-path inductors,”IEEE ISNE-2018, Taipei, Taiwan 2018.
    [67] S.-L. Jang, Ke Jen Lin, Wen Cheng Lai, and M.-H. Juang,” A capacitive cross-coupled GaN HEMT injection-locked frequency divider,” Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2018.
    [68] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 463–465, Jul. 2005.
    [69] Z. Herbert, S. Lai, K. Dan, F. Jonathan, A. Kristoffer and R. Niklas, ” An X-band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp. (CSICS), Oct. 16–19, 2011, pp. 1–4.
    [70] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014.
    [71] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,” 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [72] S.-L. Jang, H.-H. Lin and C.-W. Hsue,” Mode-switching left-handed standing wave voltage-controlled oscillator,”Microw. Opt. Technol. Lett. vol. 55, 9, pp. 1977–2244, Sept.2013.
    [73] S.-L. Jang, W.-H. Lee, and C.-W. Hsue, ” Fully-integrated standing wave oscillator using composite right/left-handed LC network,” Microw. Opt. Technol. Lett., vol. 55, 5, pp.985-988, May. 2013.
    [74] S.-L. Jang, Y.-W. Liu, C.-W. Chang, and C.-W. Hsue,” Dual-band VCO with composite right-/left-handed resonator,” Microw. Opt. Technol. Lett.,vol. 55, 3, pp. 468-471, March. 2013.
    [75] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, “Design of ultra-low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [76] G. Soubercaze-Pun, J. G. Tartarin, L. Bary, J. Rayssac, E. Morvan, B. Grimbert, S. L. Delage, J.-C. De Jaeger, and J. Graffeuil, “Design of a X-band GaN oscillator: From the low frequency noise device characterization and large signal modeling to circuit design,” in IEEE MTT-S Int. Dig., Jun. 11–16, 2006, pp. 747–750.
    [77] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T.R.Prunty, L.F.Eastman, andJ. R. Shealy,“High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
    [78] A. Balandin, S. V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne, and C. R. Viswanathan, “Low flicker-noise GaN/AlGaN heterostructure fieldeffect transistors for microwave communications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1413–1417, Aug. 1999.
    [79] A. V. Vertiatchikh and L. F. Eastman, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 535–537, Sep. 200
    [80] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [81] S. Levantino, C. Samori, A. Zanchi, and A. L. Lacaita, “AM-to-PM conversion in varactor-tuned oscillators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 7, pp. 509–513, Jul. 2002.

    無法下載圖示 全文公開日期 2023/11/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE