簡易檢索 / 詳目顯示

研究生: 吳聖傑
Sheng-chieh Wu
論文名稱: 新型哈特萊壓控振盪器及注入鎖定除頻器之設計
Design of Novel Hartley Voltage-Controlled-Oscillator and Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
C-W Hsue
莊敏宏
M-H Juang
徐世祥
S-H Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 105
中文關鍵詞: 哈特萊壓控振盪器除頻器
外文關鍵詞: Hartley, VCO, ILFD
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要描述四個不同型式的壓控振盪器與頻率除頻器,其分別為“新型Hartley低相位雜訊壓控震盪器”、“新型Hartley注入鎖定除頻器”、 “CMOS Top-Series四相位輸出注入鎖定除頻器”及“雙頻帶注入鎖定除頻器”。前三電路皆採用台積電所提供之零點一八微米互補式金氧半製程所製造,後一電路皆採用台積電所提供之零點三五微米互補式金氧半製程所製造。
    新型Hartley低相位雜訊壓控震盪器(VCO)與新型Hartley注入鎖定除頻器(ILFD)均是採用台積電0.18um 1P6M CMOS 製程所實現。VCO的電壓操作在1.9V時,調變頻率可從9.93GHz到11.59GHz,其消耗功率為15.58mW;其頻率為11.59GHz所量測的相位雜訊為-116.44dBc/Hz。ILFD的電壓操作在1.8V時,調變頻率可從4.13GHz到4.61GHz;注入功率大小在0dBm的訊號時,鎖定範圍從7.8GHz 到 9.4GHz;其消耗功率為6.3mW。
    注入鎖定除頻器使用Top-Series的耦合方式自行產生四相位輸出。其電感採用3-D電感模式節省晶片面積,在電源電壓0.9V情況,可調頻率從2.02GHz到2.28GHz,注入功率大小為-8dBm的訊號時,頻率鎖定範圍從3.60GHz到6.05GHz;其功率消耗9.36mW,其量測相位差為0.19°。
    雙頻帶注入鎖定除頻器是開關式電感雙頻帶注入鎖定除頻器,藉由開關電感的切換,可以達到雙頻帶除頻器。其自振頻率範圍在低頻帶和高頻帶分別是從1.89GHz到2.0GHz和從1.81GHz到1.90GHz。量測結果顯示其注入功率大小為0之訊號下,總鎖定頻率範圍為3.3GHz到4.8GHz;其電路操作在高頻帶的消耗功率為9.2mW及操作在低頻帶的消耗功率為17mW。


    This thesis presents a novel Hartley low phase noise differential CMOS voltage-controlled-oscillator (VCO) and new CMOS Hartley injection-locked frequency divider (ILFD). The proposed VCO and ILFD were fabricated by the TSMC 0.18-μm 1P6M CMOS technology. The low phase noise VCO adopts full PMOS to achieve a better phase noise performance. The proposed VCO operates from 9.93GHz to 11.61GHz with 14.47% tuning range. The measured phase noise at 1-MHz offset is about -116.44dBc/Hz at 11.59GHz. The power consumption of the VCO core is 15.58mW at the supply voltage of 1.9V. The free-running frequency of the ILFD is tunable from 4.13GHz to 4.61GHz. At the input power of 0dBm, the total divide-by-2 locking range is from 7.8GHz to 9.4GHz as the tuning voltage is varied from 0V to 1.8V. The core power consumption is 6.3mW at the supply voltage of 1.8V.
    A novel divide-by-2 injection-locked frequency divider (ILFD). The ILFD consists of a 2.1GHz top-series quadrature voltage controlled oscillator (QVCO) and two NMOS switches, which are in parallel with the QVCO resonators for signal injection. The proposed ILFD uses 3-dimensional inductor to save chip area and has been implemented with the TSMC 0.18-μm 1P6M CMOS technology. The core power consumption is 9.36mW at the supply voltage of 0.9V. The free-running frequency of the ILFD is tunable from 2.02GHz to 2.28GHz. At the input power of -8dBm, the total divide-by-2 locking range is from 3.6GHz to 6.05GHz as the tuning voltage is varied from 0V to 0.9V. The phase noise of the locked output spectrum is lower than that of free running ILFD in the mode. The phase deviation of quadrature output is about 0.19°.
    Dual-band divide-by-2 CMOS LC-tank injection-locked frequency divider (ILFD) has been proposed and implemented in a 0.35-μm 2P4M CMOS process. By switching on/off the inductor switch, a dual-band frequency divider can be obtained. The self-oscillating tuning ranges of low-frequency and high-frequency band are respectively from 1.89GHz to 2GHz and from 1.81GHz to 1.9GHz. The total locking range is from 3.3GHz to 4.8GHz at the input power of 0dBm. The core power consumption is 9.2mW for high-frequency band and 17mW for low-frequency band at the supply voltage of 2V.

    中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures VIII Chapter 1 Introduction 1 1. 1 Background 1 1. 2 Thesis Organization 3 Chapter 2 The Principle of Oscillators 5 2. 1 Basic Theory of Oscillators 5 2.1. 1 Two-Port (Feedback) View 5 2.1. 2 One-Port (Negative Resistance) View 8 2. 2 Quality Factor 11 2. 3 Parameters of VCO’s 15 2.4. 1 Definition of The Phase Noise 20 2.4. 2 Power and FOM 26 2. 5 On-Chip Varactors 27 2.5. 1 Diode Varactor 27 2.5. 2 MOS Varactor 28 2. 6 On-Chip Inductors 33 2.6. 1 Spiral Inductor 34 2.6. 2 The Transformer 40 2. 7 The General Resonator 46 2.7. 1 Single Transistor Oscillator 47 2.7. 2 Cross-Coupled Oscillator 50 2.7. 3 Complementary Cross-Coupled Topology 51 Chapter 3 Hartley VCO and Injection-Locked Frequency Divider 55 3. 1 Introduction 55 3. 2 Tapped Inductor Design 56 3. 3 Circuit Design of Hartley VCO 57 3. 4 Circuit Design of Hartley ILFD 65 3. 5 Measurement Results 68 Chapter 4 CMOS Top-Series Coupling Quadrature Injection-Locked Frequency Divider 77 4. 1 Introduction 77 4. 2 Design of The QILFD 78 4. 3 Experimental Results 83 Chapter 5 Dual-Band 0.35μm CMOS Injection-Locked Frequency Dividers 89 5. 1 Introduction 89 5. 2 Circuit Design 91 5. 3 Measurement and Discussion 94 Chapter 6 Conclusion 99 References 102

    [1] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003
    [2] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [3] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, 1996
    [4] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
    [5] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [6] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [7] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
    [8] J. N. Burghartz, “Integrated RF and microwave components in BiCMOS technology,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1559-1570, 1996.
    [9] Svelto, F. Erratico, P. Manzini, S. Castello, R. Dipt. di Ingegneria, Univ. di Bergamo, Dalmine, “A metal-oxide-semiconductor varactor,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 164-166, 1999.
    [10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, 2000.
    [11] R. L. Bunch, S. Raman, “Large signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, pp. 1325-1332, 2003
    [12] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications”, Kluwer Academic Publishers, 2004.
    [13] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998..
    [14] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [15] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [16] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS ‘99, vol. 2, pp. 573.576, 1999.
    [17] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002
    [18] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109, 1974.
    [19] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
    [20] A. Hajimiri, and T. H. Lee, The design of low noise oscillators, Kluwer Academic Publishers, 1999.
    [21] B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000..
    [22] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003.1011, 2002.
    [23] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
    [24] P. W. Lai, L. Dobos, and S. Long, “A 2.4 GHz SiGe low phase-noise VCO using on chip tapped inductor,” in Proc. IEEE ESSIRC, 2003, pp. 505–508.
    [25] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5 GHz transformer-coupled shifting CMOS VCO using bias-level technique,” in Proc. IEEE RFIC Symp., Jun. 2004, pp. 127–130.
    [26] G. De Astis, D. Cordeau, J.-M. Paillot, and L. Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2087–2091, Oct. 2005.
    [27] M.-D. Tsai, Y.-H. Cho, and H. Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 5, pp. 327–329, May 2005.
    [28] C. M. Hung, B. Floyd, and K. K. O, “A fully integrated 5.35-GHz CMOS VCO and a prescaler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 17–22, Jan. 2001.
    [29] A. Jerng and C. G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 360–369, Feb. 2005.
    [30] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1170-1174, July 2004.
    [31] Y. H. Chuang, S.-H. Lee, R. H. Yen, S. L. Jang, J. F. Lee, and M. H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [32] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35-μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.
    [33] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004
    [34] P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, Vol. 39, No. 11, pp. 1883-1893, Nov. 2004.
    [35] A. Ravi, K. Soumyanath, L. R. Carley, and R. Bishop, “An integrated 10/5GHz injection-locked quadrature LC VCO in a 0.18μm digital CMOS process,” in Proc. ESSCIRC, 2002, pp.543-546.
    [36] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee and S.-H. Lee, “A CMOS dual-band voltage controlled oscillator,” 2006 IEEE Asia Pacific Conf. Circuits and Systems, pp.514-517.
    [37] H. Shin, Z. Xu and M. F. Chang, “A 1.8-V 6/9-GHz reconfigurable dual-band quadrature LC VCO in SiGe BiCMOS technology,” IEEE J. of Solid-State Circuits, vol.38, no.6, pp.1028-1032, June. 2003
    [38] R. Mukhopadhyay, C.-H. Lee and J. Laskar, “A 580-μW1.8–6 GHz multiband switched-resonator SiGe VCO with 0.3-V supply voltage,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 793-795, Nov. 2007.
    [39] R. Mukhopadhyay, Y. Park, P. Sen, N. Srirattana, J. Lee, C.-H. Lee, S. Nuttinck, A. Joseph, J. D. Cressler and J. Laskar, “Reconfigurable RFICS in Si-based technologies for a compact intelligent RF frontend,”IEEE Tran. Microw. Theory Tech., vol. 53, no. 1, pp. 81-93, Jan. 2005.
    [40] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [41] S. Verma, H. Rategh and T. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, Jun. 2003.
    [42] S.-L. Jang, C.-F. Lee and W.-H. Yeh, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp. 142-144, Feb. 2007.
    [43] S.-L. Jang, W. Yeh and C.-F. Lee, “A low power CMOS divide-by-3 LC-tank injection locked frequency divider,” Microwave and Optical Technology Lett., vol. 50, no. 1, pp.259-262, Jan. 2008.
    [44] Tiebout, M. “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider” Solid-State Circuits, IEEE Journal of Volume 39, Issue 7, July 2004 Page(s):1170 – 1174.
    [45] Tiebout, M. “A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor” Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th European 24-26 Sept. 2002 Page(s):799 – 802.
    [46] Mazzanti, A.; Uggetti, P.; Battagia, R.; Svelto, F.; “Analysis and design of a dual band reconfigurable VCO “ Electronics, Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th IEEE International Conference on 13-15 Dec. 2004 Page(s):37 – 40.
    [47] Arana, V.; Suarez, A.; Dorta, P.; “ Dual-band frequency divider based on oscillation control “ Microwave Symposium Digest, 2004 IEEE MTT-S International Volume 3, 6-11 June 2004 Page(s):1501 - 1504 Vol.3.
    [48] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18 _m CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp.
    [49] Burghartz, J.N.; Soyuer, M.; Jenkins, K.A.;” Microwave inductors and capacitors in standard multilevel interconnect silicon technology ”Burghartz, J.N.; Soyuer, M.; Jenkins, K.A.;Microwave Theory and Techniques, IEEE Transactions on Volume 44, Issue 1, Jan. 1996 Page(s):100 – 104
    [50] B.Razavi, Design of Analong COMS Integrated Circuits, Mc Graw, 2001.
    [51] M.Pozar, Microwave Engineering, Third Edition, John Wiley&Sons, Inc, 2005.

    無法下載圖示 全文公開日期 2013/06/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE