簡易檢索 / 詳目顯示

研究生: 洪煒
Wei Hong
論文名稱: 數位輔助干涉儀於FMCW LiDAR的應用
Digital Auxiliary Interferometer applications on FMCW LiDAR
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 周錫熙
Hsi-Hsir Chou
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 光學雷達掃頻雷射輔助干涉儀
外文關鍵詞: LiDAR, Sweep Source, Auxiliary Interferometer
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光學雷達(Light Detection And Ranging, LiDAR)是一種起源於1960年代的光學遙測技術,自輔助駕駛系統等應用(Advanced Driver Assistance Systems)逐漸普及後更成為光學感測器的重點研究項目之一,其和傳統光學相機相比,具有生成包含深度之三維影像的特點,使其在工業工程,自駕車,機器視覺等領域具有強大的應用潛力,為光學感測技術中的關鍵項目之一。
目前市面上主流的LiDAR系統依照工作原理不同可分為飛時測距光學雷達(Time of Flight LiDAR, ToF LiDAR)以及連續波調頻光學雷達(Frequency-Modulated Continuous-Wave LiDAR, FMCW LiDAR)兩種,和ToF LiDAR相比,FMCW LiDAR具有高的解析度以及更長的工作距離等特點,且在環境抗噪能力與精準度上具有比飛時測距光達更為優異的表現,然而其龐大的系統體積限制以及更高的調頻光源要求,使其在消費性電子產品上的應用受到侷限而難以商業量產,因此,縮小FMCW LiDAR的系統體積將會是提升其競爭力的關鍵之一。
為了能縮小FMCW LiDAR的系統大小,本論文提出基於光纖的數位輔助干涉儀(Digital Auxiliary Interferometer)應用於雙光路的FMCW LiDAR的設計,利用希爾伯特轉換(Hilbert Transform) 修正連續波調頻光學雷達中光源非線性掃頻造成的量測誤差,搭配使用內插法倍數增加插值點數的方式符合奈奎斯取樣定理(Nyquist theorem),能在校正雷射非線性調頻導致的計算誤差外,也能在滿足取樣定理的條件下大幅縮短輔助干涉儀需要的光纖長度達到縮小體積的目的,同時免去需使用價格昂貴的線性掃頻雷射以及使雷射調頻線性化的回授電路,達到降低 FMCW LiDAR 系統成本同時進一步優化量測精準度之目的。
在本論文實驗量測中,我們使用上述方法將輔助干涉儀光纖長度從類比輔助干涉儀的12公尺大幅縮減至數位輔助干涉儀的10.5公分,分別量測了固定距離10cm至100cm,每公分各10筆數據,以及速度從1cm/s至5cm/s,每公分/秒各10筆數據,和光纖型數位輔助干涉儀用於對反射鏡的二維影像量測,與輔助干涉儀晶片的51筆一維影像量測等,從結果顯示數位輔助干涉儀在重取樣的表現上進一步改善了類比輔助干涉儀存在的實驗誤差,同時在公分等級的距離與速度量測產生的絕對誤差更進一步縮減至43μm與87μm。


Light Detection And Ranging (LiDAR) has become one of the vital research projects for related sensing systems. Compared with traditional optical cameras, LiDAR has been highly valued in recent years to generate three-dimensional images with depth, resulting in a strong potential for applications in industrial engineering, self-driving vehicles, and medical and scientific industries.
Typically, the major LiDAR systems can be divided into Time of Flight LiDAR (ToF LiDAR) and Frequency-Modulated Continuous-Wave LiDAR (FMCW LiDAR), depending on their operating principles. Compared with ToF LiDAR, FMCW LiDAR has a higher resolution and longer working distance, but its bulky system footprint and higher requirement for frequency-modulated sweeping light source limit its application in commercial electronic products and make it challenging to be mass-produced. Therefore, reducing the system size of FMCW LiDAR will be one of the keys to improve its competitiveness further.
To reduce the system size of FMCW LiDAR, we proposed the fiber-based digital auxiliary interferometer that can be conducted in the design of dual-path FMCW LiDAR, calibrating the measurement error caused by non-linear frequency tuning through Hilbert-Transform. Since the Nyquist theorem can be satisfied by shortening the sampling interval, the size of the digital auxiliary interferometer can be significantly reduced without affecting the resampling and measured results. Without an expensive linear swept source or calibrating feedback circuits, the FMCW LiDAR accuracy can be further optimized.
The above method could reduce the auxiliary fiber length from 12 m to 10.5 cm . Ten datum per 10 cm from 10 cm to 100cm for fixed distance, and 10 datum per cm/s from 1cm/s to 5cm/s comparison datum were measured and resampled using both analog auxiliary interferometer and digital auxiliary interferometer. Two-dimensional image of a reflection mirror and 51 points measurement resampling from auxiliary interferometer chip were also measured. Results showed with improved absolute errors in distance and velocity measurements from the centimeter scale to 43 μm and 87 μm, respectively.

摘要 II Abstract IV 誌 謝 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 2 1.3 論文架構 3 第二章 FMCW理論介紹 5 2.1 FMCW之固定目標量測理論介紹 5 2.2 FMCW之移動目標量測理論介紹 9 第三章 調頻非線性現象 12 3.1 造成非線性調頻現象之成因及影響 12 3.2 類比輔助干涉儀 13 3.3 光纖型數位輔助干涉儀 17 3.4 類比與數位輔助干涉儀之模擬步驟 20 3.4.1類比輔助干涉儀模擬步驟 20 3.4.2數位輔助干涉儀模擬步驟 23 第四章 光電積體電路 26 4.1矽光子簡介 26 4.2矽光子元件 27 4.2.1光波導 27 4.2.2光柵耦合器 28 4.2.3多模干涉耦合器(Multimode Interference, MMI) 29 4.2.4 光延遲線(Optical Delay Line) 30 4.3晶片型數位輔助干涉儀 31 第五章 實驗結果 35 5.1系統架設 35 5.2固定距離量測 36 5.3移動目標速度量測 41 5.4速度與距離的同時量測 47 5.5 二維影像量測 48 第六章 晶片型數位輔助干涉儀 53 6.1 系統架構 53 6.2 反射鏡量測 54 第七章 結論與未來展望 56 7.1結論 56 7.2未來展望 57 參考文獻 58

[1]. A. B. Gschwendtner, and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Laboratory Journal, vol. 12, no. 2, pp. 383-396, 2000.
[2]. G. G. Goyer, and R. Watson, “The laser and its application to meteorology,” Bulletin of the American Meteorological Society, vol. 44, no. 9, pp. 564-570, 1963.
[3]. I. Wikimedia Foundation, “LiDAR-Wikipedia,” 2021.
[4]. T.-J. Ahn and D. Y. Kim, "Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation," Applied optics, vol. 46, no. 13, pp. 2394-2400, 2007.
[5]. J. Liu, Q. Sun, Z. Fan, and Y. Jia, "TOF lidar development in autonomous vehicle." pp. 185-190, 2018.
[6]. G. Chen, C. Wiede, and R. Kokozinski, “Data processing approaches on SPAD-based d-TOF LiDAR systems: A review,” IEEE Sensors Journal, vol. 21, no. 5, pp. 5656-5667, 2021.
[7]. F. Zhang, L. Yi, and X. Qu, “Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system,” Optics Communications, vol. 474, pp. 126066, 2020.
[8]. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica, vol. 3, no. 8, pp. 887-890, 2016.
[9]. C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, "High-performance integrated optical phased arrays for chip-scale beam steering and lidar." p. ATu3R. 2, 2018.
[10]. S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, and O. A. J. Gordillo, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol. 7, no. 1, pp. 3-6, 2020.
[11]. A. C. Lesina, D. Goodwill, E. Bernier, L. Ramunno, and P. Berini, “On the performance of optical phased array technology for beam steering,” arXiv preprint arXiv:2007.12265, 2020.
[12]. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Optics express, vol. 18, no. 9, pp. 9511-9517, 2010.
[13]. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Jiang, and A. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Optics express, vol. 13, no. 26, pp. 10523-10538, 2005.
[14]. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Optics express, vol. 13, no. 9, pp. 3513-3528, 2005.
[15]. K. Yüksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Optics express, vol. 17, no. 7, pp. 5845-5851, 2009.
[16]. Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, "Non-mechanical beam-steer lidar system based on swept-laser source." p. ThE48, 2018.
[17]. M. Okano, and C. Chong, “Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source,” Optics Express, vol. 28, no. 16, pp. 23898-23915, 2020.
[18]. T. Kim, “Realization of Integrated Coherent LiDAR,” UC Berkeley, 2019.
[19]. B. Behroozpour, P. A. Sandborn, M. C. Wu, and B. E. Boser, “Lidar system architectures and circuits,” IEEE Communications Magazine, vol. 55, no. 10, pp. 135-142, 2017.
[20]. J. J. Armstrong, "Distance ranging to biological tissue using fibre-optic Fabry-Perot, short tuning range FMCW interferometry." p. 418554, 2000.
[21]. C.Wolff."Radar Basics," https://www.radartutorial.eu/11.coherent/co06.en.html.
[22]. K. Iiyama, T. Washizuka, and K. Yamaguchi, "Three-dimensional object profiling by FMCW optical ranging system using a VCSEL." pp. 1-3, 2017.
[23]. K. Iiyama, L.-T. Wang, and K.-I. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” Journal of lightwave technology, vol. 14, no. 2, pp. 173-178, 1996.
[24]. D. Gabor, “Theory of communication. Part 1: The analysis of information,” Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, vol. 93, no. 26, pp. 429-441, 1946.
[25]. J. M. Senior, and M. Y. Jamro, Optical fiber communications: principles and practice: Pearson Education, 2009.
[26]. B. Bhandari, C.-S. Im, K.-P. Lee, S.-M. Kim, M.-C. Oh, and S.-S. Lee, “Compact and Broadband Edge Coupler Based on Multi-Stage Silicon Nitride Tapers,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1-11, 2020.
[27]. Mu, X.; Wu, S.; Cheng, L.; Fu, H.Y. Edge Couplers in Silicon Photonic Integrated Circuits: A Review. Appl. Sci. 2020, 10, 1538. https://doi.org/10.3390/app10041538
[28]. R. Liu, Y. Wang, D. Yin, H. Ye, X. Yang, and Q. Han, “A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide,” Journal of Semiconductors, vol. 38, no. 5, p. 054007, 2017.
[29]. Cheng, L.; Mao, S.; Li, Z.; Han, Y.; Fu, H.Y. Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues. Micromachines 2020, 11, 666. https://doi.org/10.3390/mi11070666
[30]. Y.-T. Lu, B. Y. B. Widhianto, S.-H. Hsu, and C.-C. Chang, “Tandem mach zehnder directional coupler design and simulation on silicon platform for optical coherence tomography applications,” Sensors, vol. 20, no. 4, p. 1054, 2020.
[31]. S. Jiang, B. Liu, H. Wang, and B. Zhao, "Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision," Sensors, 19, 5132, 2019.
[32]. 康致嘉,「基於矽光子學的輔助干涉儀之FMCW LiDAR應用」,國立台灣科技大學 光電工程所 碩士學位論文,台北,2021。

無法下載圖示 全文公開日期 2024/08/16 (校內網路)
全文公開日期 2024/08/16 (校外網路)
全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE