簡易檢索 / 詳目顯示

研究生: 陳名軒
Ming-Hsuan Chen
論文名稱: 晶片型輔助干涉儀應用於掃頻式光學同調斷層掃描術
Chip-based Auxiliary Interferometer for Swept-Source Optical Coherence Tomography
指導教授: 徐世祥
Shih-Hsiang Hsu
趙良君
Liang -Chiun Chao
口試委員: 徐世祥
Shih-Hsiang Hsu
趙良君
Liang -Chiun Chao
林保宏
Pao-hung Lin
章明
Ming Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 掃頻式光學同調斷層掃描輔助干涉儀光耦合器
外文關鍵詞: Swept-Source Optical Coherence Tomography, auxiliary interferometer, Optical Coupler
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年生物醫學科技的發展蓬勃,非侵入式成像技術的進步對於醫療診斷及後續治療給予了不小的貢獻。掃頻式光學同調斷層掃描(Swept-Source Optical coherence tomography, SS-OCT)具有小範圍但高解析度、非接觸及非侵入式即時成像的特點,因此在近年來成為眼科、牙科等醫學檢測的利器,讓醫師能更加了解病變位置的情況,助於後續的診斷和治療。為降低掃頻雷射輸出所產生的非線性現象對SS-OCT在計算空間距離時所產生的誤差,因此在系統中加入輔助干涉儀(Auxiliary Interferometer)進行量測修正。由於光纖型輔助干涉儀所需的體積龐大,因此本論文藉由絕緣層上覆矽(Silicon-on-insulator, SOI)技術結合輔助干涉儀系統來達到晶片化,以解決體積過大之問題。
    本論文將針對掃頻雷射的非線性現象對SS-OCT系統量測結果之影響作探討。首先架設光纖型SS-OCT系統量測其縱向解析度、橫向解析度與靈敏度,之後,再結合光纖型輔助干涉儀系統,利用跨零點(zero crossing)的方式進行訊號處理,並進行比對,觀測後驗證使用輔助干涉儀有益於解決掃頻雷射非線性現象在SS-OCT系統上所產生之誤差。透過上述論證,再將輔助干涉儀系統的概念晶片化以縮小系統體積,並進行量測驗證,證實與光纖型輔助干涉儀系統有相同之功效。
    實驗結果顯示掃頻雷射的非線性現象對於SS-OCT系統有明顯影響,未使用輔助干涉儀系統所量測解析度明顯比使用輔助干涉儀時低於許多,而使用晶片型輔助干涉儀則跟光纖型輔助干涉儀的量測結果相似,說明輔助干涉儀設計在晶片上不僅解決體積過大的問題亦可達到與光纖型相同的量測結果。


    In recent years, biomedical technology development has been booming, and the advancement of non-invasive imaging technology has significantly contributed to medical diagnosis and follow-up treatment. Swept-Source Optical coherence tomography (SS-OCT) has the characteristics of a small area but high resolution, non-contact and non-invasive real-time imaging. Therefore, it has become a powerful tool for medical testing in ophthalmology and dentistry in recent years, allowing physicians to understand the condition of lesion locations better and facilitating follow-up diagnosis and treatment. For the SS-OCT error reduction in calculating the spatial distance due to the nonlinear modulation of the output laser, an auxiliary interferometer (AI) is implemented for characterization correction. Due to the large size of the fiber-optic AI, silicon-on-insulator (SOI) technology is utilized to demonstrate the chip-based AI in a small footprint.
    In this thesis, the nonlinear phenomenon effect of the swept laser in the SS-OCT system is investigated by first setting up a fiber-based SS-OCT system to measure the longitudinal resolution, lateral resolution, and sensitivity. Then a fiber-based AI is implemented to compensate for the signal nonlinearity through the zero crossing method. The experimental data show that the AI helps correct the nonlinear errors generated by the nonlinear phenomenon of the frequency-swept laser in the SS-OCT system. Through the above demonstration, the concept of the AI system is formed as a silicon chip for size reduction. And its measurement shows the same effective performance as the fiber optic SI system.

    The measurement results of the chip-typed AI are similar to those of the fiber-typed AI, which shows that the chip-based AI does not only solve the problem of large volume but also achieves the same measurement results as the fiber-typed AI.

    摘要 III Abstract IV 致謝 V 圖目錄 IX 表目錄 XI 緒論 1 1.1 研究背景 1 1.2文獻回顧 2 1.2.1 光學同調斷層掃描介紹 2 1.2.2 光學同調斷層掃描技術演進 3 1.2.3 矽晶片型光學同調斷層掃描系統 3 1.3 論文架構 5 第二章 光學同調斷層掃描原理介紹 6 2.1 原理與基本設置 6 2.2 光學同調斷層掃描技術之比較 11 2.3 時域式光學同調斷層掃描技術(TD-OCT) 13 2.4 頻域式光學同調斷層掃描技術(SD-OCT) 14 2.3 掃頻式光學同調斷層掃描技術(SS-OCT) 15 2.6 物體空間掃描 16 2.7 光學參數與影像解析度 17 2.7.1 點擴展函數 17 2.7.2 縱向解析度 17 2.7.3 橫向解析度 20 2.8 生物組織光學特性 23 第三章 雷射調頻非線性現象 24 3.1雷射調頻非線性現象成因及影響 24 3.2 輔助干涉儀 25 第四章 光積體電路 28 4.1 矽光波導理論 28 4.2 耦光元件 29 4.2.1邊緣耦合器(Edge coupler) 29 4.2.2光柵耦合器(Grating coupler) 29 4.3 多模干涉耦合器(Multimode Interference, MMI) 31 4.4馬赫詹德方向耦合器(Mach-Zehnder Direction Coupler, MZDC) 32 4.5晶片型輔助干涉儀 34 第五章 系統架構與量測方法 35 5.1 實驗系統架構 35 5.2 掃頻雷射 38 5.2.1 OCT光波長範圍 38 5.2.2 OCT之掃頻雷射 38 5.2.3 Santec掃頻雷射 38 5.3 光學元件介紹 40 5.3.1 光纖耦合器 40 5.3.2 光循環器 40 5.3.3 光電平衡偵測器 41 5.4 樣品臂掃描系統架構 43 5.5 參考臂架構 46 5.6 波導耦合平台 47 5.7 影像擷取系統 48 第六章 實驗結果與討論 50 6.1 使用輔助干涉儀之比較 50 6.2 空間解析度量測 51 6.2.1 縱向解析度 51 6.2.2 橫向解析度 51 6.3 Cover Glass量測 53 6.4.波導耦合器量測結果 56 6.5 晶片型輔助干涉儀量測結果 61 第七章 結論與未來展望 62 7.1 結論 62 7.2 未來展望 63 參考文獻 64

    [1] J. T. Vaughan., C. Snyder, L. DelaBarre, J. Tian, C. Akgun, K. Ugurbil, C. Olson, and A. Gopinath, “Current and Future Trends in Magnetic Resonance Imaging (MRI),” in 2006 IEEE MTT-S International Microwave Symposium Digest, 11-16 June 2006 2006, pp. 211-212.
    [2] C. F. Beckmann and S. M. Smith, “Probabilistic independent component analysis for functional magnetic resonance imaging,” (in eng), IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 137-52, Feb 2004.
    [3] P. J. L. Riviere, P. Vargas, G. Fu, and L. J. Meng, “Accelerating X-ray fluorescence computed tomography,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3-6 Sept. 2009 2009, pp. 1000-1003.
    [4] V. Daeichin, K. Kooiman, I. Skachkov, J. G. Bosch, A. F. W. v. d. Steen, and N. d. Jong, “Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation,” in 2014 IEEE International Ultrasonics Symposium, 3-6 Sept. 2014 2014, pp. 1766-1769.
    [5] M. Rajadhyaksha, “Confocal microscopy of skin cancers: translational advances toward clinical utility,” (in eng), Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2009, pp. 3231-3, 2009.
    [6] S. F. Silva, A. Batista, J. P. Domingues, M. J. Quadrado, and M. Morgado, “Fluorescence lifetime microscope for corneal metabolic imaging,” in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), 26-28 Feb. 2015, pp. 1-5.
    [7] D. G. Winters, J. Speirs, E. Block, R. A. Bartels, and J. A. Squier, “High-Speed Two-Dimensional Multiphoton Microscope using Spatial Modulation,” in Conference on Lasers and Electro-Optics 2012, San Jose, California, 2012/05/06 2012: Optical Society of America, in OSA Technical Digest, p. JW3G.1.
    [8] W. Drexler and J. G. Fujimoto, “Optical coherence tomography: technology and applications.” Springer Science & Business Media, 2008.
    [9] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science, vol. 254, no. 5035, pp. 1178-1181, 1991.
    [10] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on progress in physics, vol. 66, no. 2, p. 239, 2003.
    [11] R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express, vol. 11, no. 8, pp. 889-894, 2003.
    [12] B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. V. Leeuwen, M. Pollnau, K. Wörhoff, and R. M. D. Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE journal of selected topics in quantum electronics, vol. 18, no. 3, pp. 1223-1233, 2011.
    [13] G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Optics letters, vol. 39, no. 17, pp. 5228-5231, 2014.
    [14] M. E. Brezinski, Optical coherence tomography: principles and applications. Elsevier, 2006.
    [15] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express, vol. 11, no. 18, pp. 2183-2189, 2003.
    [16] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express, vol. 11, no. 18, pp. 2183-2189, 2003.
    [17] S. Murali and J. Rolland, “Dynamic-focusing microscope objective for optical coherence tomography,” in International Optical Design Conference, 2006: Optical Society of America, p. MD5.
    [18] S. Yun, G. Tearney, J. De Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Optics Express, vol. 12, no. 13, pp. 2977-2998, 2004.
    [19] H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomedical Optics Express, vol. 2, no. 8, pp. 2175-2188, 2011.
    [20] H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomedical Optics Express, vol. 2, no. 8, pp. 2175-2188, 2011.
    [21] P. Li, Y. He, and H. Ma, “Spectral-domain optical coherence tomography and applications for biological imaging,” in 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006: IEEE, pp. 222-225.
    [22] Z. Chen, “Fourier domain functional optical coherence tomography,” in Frontiers in Optics, 2005: Optical Society of America, p. FWA1.
    [23] T. Fountoukidou, P. Raisin, D. Kaufmann, J. Justiz, R. Sznitman, and S. Wolf, “Motion-invariant SRT treatment detection from direct M-scan OCT imaging,” International journal of computer assisted radiology and surgery, vol. 13, no. 5, pp. 683-691, 2018.
    [24] T. Latychevskaia, “Lateral and axial resolution criteria in incoherent and coherent optics and holography, near-and far-field regimes,” Applied Optics, vol. 58, no. 13, pp. 3597-3603, 2019.
    [25] S. Bliven. [Online]. Available: https://commons.wikimedia.org/wiki/File:Airy_ disk_spacing_near_Rayleigh_criterion.png.
    [26] H. Imam, “Microscopy/ophthalmology/supercontinuum lasers: supercontinuum light empowers research, biomedicine,” Biooptics World, 2014.
    [27] D. W. Piston, “Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy,” The Biological Bulletin, vol. 195, no. 1, pp. 1-4, 1998.
    [28] H. M. Subhash, “Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications,” Advances in Optical Technologies, vol. 2012, 2012.
    [29] “Wavelengths used for cold laser therapy,” Coldlasers.org, 2020.
    [30] J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Optics Express, vol. 18, no. 9, pp. 9511-9517, 2010.
    [31] K. Iiyama, T. Washizuka, and K. Yamaguchi, “Three-dimensional object profiling by FMCW optical ranging system using a VCSEL.” pp. 1-3, 2017.
    [32] G. Ducournau, O. Latry and M. Ketata, “The All-fiber MZI Structure for Optical DPSK Demodulation and Optical PSBT Encoding.” The Open Cybernetics & Systemics Journal, pp. 78-89, 2013
    [33] J. S. a. M. Y. Jamro, "Optical fiber communications: principles and practice, 3rd ed," Financial Times/Prentice Hall, 2009.
    [34] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 585-587, 2005.
    [35] A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomedical Optics Express, vol. 8, no. 2, pp. 902-917, 2017.
    [36] S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” JOSA B, vol. 27, no. 5, pp. 941-947, 2010.
    [37] B.I. Akca, “Spectral-domain optical coherence tomography on a silicon chip,” Ph. D. thesis, Universiteit Twente, 12, 2012.
    [38] H.-Y. Zheng, B.-L. Cheng, H.-Y. Lu, S.-H Hsu, and M. Takabayashi, “Bidirectional Coupler Study for Chip-Based Spectral-Domain Optical Coherence Tomography,” Micromachines, vol. 13, no. 3, pp. 4-5, 2022
    [39] F. Lexer, C. K. Hitzenberger, A. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Applied Optics, vol. 36, no. 25, pp. 6548-6553, 1997.
    [40] G. Hausler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” Journal of Biomedical Optics, vol. 3, no. 1, pp. 21-31, 1998.
    [41] [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber= PDB450C-AC.
    [42] U. Thorlabs Inc. (New Jersey, 2020. [Online]. Available: http://www.thorlabs.com/.

    無法下載圖示 全文公開日期 2024/09/02 (校內網路)
    全文公開日期 2024/09/02 (校外網路)
    全文公開日期 2024/09/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE