簡易檢索 / 詳目顯示

研究生: 賴明緯
Ming-Wei Lai
論文名稱: 光耦合器在矽基掃頻式光學同調斷層掃描術的訊號和雜訊之效應
Optical Coupler Effect in Signal and Noise for Silicon-based Swept-Source Optical Coherence Tomography
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
口試委員: 蔡孟燦
Meng-Tsan Tsai
周錫熙
H.-H. Chou
林保宏
Pao-hung Lin
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 掃頻式光學同調斷層掃描光學同調斷層掃描光耦合器矽基訊號和雜訊
外文關鍵詞: Signal and Noise
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 1-I Abstract 1-IV 目錄 1-VII 圖目錄 1-X 表目錄 1-XIII 第1章 緒論 1-1 1.1 研究背景 1-1 1.2文獻回顧 1-2 1.2.1 光學同調斷層掃描介紹 1-2 1.2.2 光學同調斷層掃描技術演進 1-3 1.2.3 矽晶片型光學同調斷層掃描系統 1-3 1.3 論文架構 1-5 第2章 光學同調斷層掃描原理 2-6 2.1 操作原理與基本設置 2-6 2.2 光學同調斷層掃描技術之比較 2-11 2.3 時域式光學同調斷層掃描技術(TD-OCT) 2-13 2.4 頻域式光學同調斷層掃描技術(SD-OCT) 2-14 2.5 掃頻式光學同調斷層掃描技術(SS-OCT) 2-15 2.6 物體空間掃描 2-16 2.7 光學參數與影像解析度 2-16 2.7.1 點擴展函數 2-17 2.7.2 縱向解析度 2-17 2.7.3 橫向解析度 2-20 2.8 生物組織光學特性 2-22 第3章 光波導耦合器與波長響應平坦度原理 3-24 3.1 波導理論 3-24 3.2 光波導耦合器介紹 3-25 3.3 系統靈敏度介紹 3-26 3.4 波長響應平坦度介紹 3-27 第4章 系統架構與實驗方法 4-30 4.1 實驗系統架構 4-30 4.2 掃頻雷射 4-32 4.2.1 OCT光波長範圍 4-32 4.2.2 OCT之掃頻雷射 4-32 4.2.3 Santec掃頻雷射 4-32 4.3 輔助干涉儀 4-33 4.4 光學元件介紹 4-34 4.4.1 光纖耦合器 4-34 4.4.2 光循環器 4-35 4.4.3 光電平衡偵測器 4-35 4.5 樣品臂掃描系統架構 4-37 4.6 參考臂架構 4-39 4.7 波導耦合平台 4-40 4.8 影像擷取系統 4-40 4.9 訊號處理流程 4-42 4.10 LabVIEW程式 4-44 第5章 結果與討論 5-46 5.1 空間解析度量測 5-46 5.1.1 縱向解析度 5-46 5.1.2 系統靈敏度測試 5-47 5.1.3 橫向解析度 5-48 5.2 Scotch Tape量測 5-49 5.3 分光比與靈敏度量測結果 5-52 5.3.1 方向耦合器(DC) 5-53 5.3.2 馬赫詹德方向耦合器(MZDC) 5-56 5.3.3 串聯型馬赫詹德方向耦合器(CMZDC) 5-59 5.4 量測結果比較 5-60 5.5 模擬結果比較 5-62 第6章 結論與未來展望 6-63 6.1 結論 6-63 6.2 未來展望 6-64 參考文獻 6-65

    [1] J. T. Vaughan et al., "Current and Future Trends in Magnetic Resonance Imaging (MRI)," in 2006 IEEE MTT-S International Microwave Symposium Digest, 11-16 June 2006 2006, pp. 211-212, doi: 10.1109/MWSYM.2006.249451.
    [2] C. F. Beckmann and S. M. Smith, "Probabilistic independent component analysis for functional magnetic resonance imaging," (in eng), IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 137-52, Feb 2004, doi: 10.1109/tmi.2003.822821.
    [3] P. J. L. Riviere, P. Vargas, G. Fu, and L. J. Meng, "Accelerating X-ray fluorescence computed tomography," in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3-6 Sept. 2009 2009, pp. 1000-1003, doi: 10.1109/IEMBS.2009.5333568.
    [4] V. Daeichin, K. Kooiman, I. Skachkov, J. G. Bosch, A. F. W. v. d. Steen, and N. d. Jong, "Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation," in 2014 IEEE International Ultrasonics Symposium, 3-6 Sept. 2014 2014, pp. 1766-1769, doi: 10.1109/ULTSYM.2014.0438.
    [5] M. Rajadhyaksha, "Confocal microscopy of skin cancers: translational advances toward clinical utility," (in eng), Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2009, pp. 3231-3, 2009, doi: 10.1109/iembs.2009.5333600.
    [6] S. F. Silva, A. Batista, J. P. Domingues, M. J. Quadrado, and M. Morgado, "Fluorescence lifetime microscope for corneal metabolic imaging," in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), 26-28 Feb. 2015 2015, pp. 1-5, doi: 10.1109/ENBENG.2015.7088878.
    [7] D. G. Winters, J. Speirs, E. Block, R. A. Bartels, and J. A. Squier, "High-Speed Two-Dimensional Multiphoton Microscope using Spatial Modulation," in Conference on Lasers and Electro-Optics 2012, San Jose, California, 2012/05/06 2012: Optical Society of America, in OSA Technical Digest, p. JW3G.1.
    [8] W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications. Springer Science & Business Media, 2008.
    [9] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Reports on progress in physics, vol. 66, no. 2, p. 239, 2003.
    [10] R. Leitgeb, C. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Optics express, vol. 11, no. 8, pp. 889-894, 2003.
    [11] B. I. Akca et al., "Toward spectral-domain optical coherence tomography on a chip," IEEE journal of selected topics in quantum electronics, vol. 18, no. 3, pp. 1223-1233, 2011.
    [12] G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, "Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography," Optics letters, vol. 39, no. 17, pp. 5228-5231, 2014.
    [13] M. E. Brezinski, Optical coherence tomography: principles and applications. Elsevier, 2006.
    [14] B. Bouma, Handbook of optical coherence tomography. CRC Press, 2001.
    [15] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Optics express, vol. 11, no. 18, pp. 2183-2189, 2003.
    [16] S. Murali and J. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," in International Optical Design Conference, 2006: Optical Society of America, p. MD5.
    [17] S. Yun, G. Tearney, J. De Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Optics Express, vol. 12, no. 13, pp. 2977-2998, 2004.
    [18] H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, "Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography," Biomedical optics express, vol. 2, no. 8, pp. 2175-2188, 2011.
    [19] K. Neuhaus et al., "Performance review of multiple reference versus time domain optical coherence tomography," IEEE Photonics Journal, vol. 10, no. 3, pp. 1-14, 2018.
    [20] P. Li, Y. He, and H. Ma, "Spectral-domain optical coherence tomography and applications for biological imaging," in 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006: IEEE, pp. 222-225.
    [21] Z. Chen, "Fourier domain functional optical coherence tomography," in Frontiers in Optics, 2005: Optical Society of America, p. FWA1.
    [22] T. Fountoukidou, P. Raisin, D. Kaufmann, J. Justiz, R. Sznitman, and S. Wolf, "Motion-invariant SRT treatment detection from direct M-scan OCT imaging," International journal of computer assisted radiology and surgery, vol. 13, no. 5, pp. 683-691, 2018.
    [23] T. Latychevskaia, "Lateral and axial resolution criteria in incoherent and coherent optics and holography, near-and far-field regimes," Applied optics, vol. 58, no. 13, pp. 3597-3603, 2019.
    [24] S. Bliven. [Online]. Available: https://commons.wikimedia.org/wiki/File:Airy_ disk_spacing_near_Rayleigh_criterion.png.
    [25] H. Imam, "Microscopy/ophthalmology/supercontinuum lasers: supercontinuum light empowers research, biomedicine," Biooptics world, 2014.
    [26] D. W. Piston, "Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy," The Biological Bulletin, vol. 195, no. 1, pp. 1-4, 1998.
    [27] H. M. Subhash, "Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications," Advances in Optical Technologies, vol. 2012, 2012.
    [28] "Wavelengths used for cold laser therapy," Coldlasers.org, 2020.
    [29] J. S. a. M. Y. Jamro, "Optical fiber communications: principles and practice, 3rd ed," Financial Times/Prentice Hall, 2009.
    [30] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Optical directional coupler based on Si-wire waveguides," IEEE photonics technology letters, vol. 17, no. 3, pp. 585-587, 2005.
    [31] A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, "Methods to assess sensitivity of optical coherence tomography systems," Biomedical optics express, vol. 8, no. 2, pp. 902-917, 2017.
    [32] M. E. Brezinski et al., "Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology," Circulation, vol. 93, no. 6, pp. 1206-1213, 1996.
    [33] B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, "Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography: Imaging at 1310 nm vs. 1550 nm wavelength," Journal of biophotonics, vol. 2, no. 6‐7, pp. 357-363, 2009.
    [34] F. Lexer, C. K. Hitzenberger, A. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Applied optics, vol. 36, no. 25, pp. 6548-6553, 1997.
    [35] G. Hausler and M. W. Lindner, "" Coherence radar" and" spectral radar"-new tools for dermatological diagnosis," Journal of biomedical optics, vol. 3, no. 1, pp. 21-31, 1998.
    [36] [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber= PDB450C-AC.
    [37] U. Thorlabs Inc. (New Jersey, 2020. [Online]. Available: http://www.thorlabs.com/.
    [38] "Scotch Tape." [Online]. Available: https://www.tedpella.com/tape_html/tape.htm#_ 16089-6.

    無法下載圖示 全文公開日期 2026/08/18 (校內網路)
    全文公開日期 2031/08/18 (校外網路)
    全文公開日期 2031/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE