簡易檢索 / 詳目顯示

研究生: 王先佑
Hsien-Yu Wang
論文名稱: 摻鉻鎂橄欖石晶體光纖製作與特性量測
Fabrication and Characterization of Cr:Forsterite Crystal Fiber
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
黃升龍
Sheng-Lung Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 摻鉻鎂橄欖石晶體光纖光學同調斷層掃描單纖衣晶體光纖
外文關鍵詞: Cr:forsterite, Optical coherence tomography, single-clad crystal fiber, crystal fiber
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描儀是一種新穎的非侵入式醫學影像技術,其縱向解析度受光源的中心波長與頻寬所影響。本實驗室所研製生長的摻鉻鎂橄欖石晶體光纖擁有寬頻的自發輻射頻譜與適當波長,若做為光學同調掃描系統光源,可增進其縱向解析度近微米級,能夠掃瞄到細胞組織間細微結構之影像,故對於早期疾病檢查與組織結構之探討與研究有相當大之應用價值。

    本論文研究摻鉻鎂橄欖石晶體光纖的製作與特性量測。藉由雷射加熱基座生長法,我們生長出不同直徑的摻鉻鎂橄欖石晶體光纖與玻璃纖衣包覆的單纖衣晶體光纖,纖核直徑為70 μm。藉由電子微探儀量測其鉻離子平均濃度為0.011 Wt.%,纖核折射率經共焦顯微鏡量測為1.635。以長度為22 mm的單纖衣摻鉻鎂橄欖石晶體光纖利用半導體雷射(915±10 nm)為幫浦光,成功研製波峰1107 nm,3 dB頻寬為168 nm的超頻寬自發輻射放大光源,初期功率可獲得25 μW當幫浦功率為1.12 W,以其用作光學同調斷層掃描儀,其縱向解析度可達約3 μm。


    Optical coherence tomography (OCT) is a novel non-invasive medical tomography technology. Its axial resolution is determined by the center wavelength and bandwidth of the light source. Our proprietary Cr:forsterite single-clad crystal fiber has broad bandwidth and proper center wavelength. If applied as an OCT light source, micrometer-level resolution may likely be achieved. It is very useful for imaging fine structures of cells and tissues, and for early diagnostics of disease.

    In this thesis, research work was conducted on fabrication and characterization of Cr:forsterite crystal fibers. By means of laser heated pedestal growth (LHPG) method, we have successfully developed Cr:forsterite single crystal fibers of various diameters, and a glass-clad crystal fiber with a core diameter of 70 μm. By using electron probe micro-analyzer (EPMA), an average chromium concentration of 0.011 Wt.% was measured. The refractive index of the core was measured to be 1.635 with confocal microscope. In addition, we have successfully demonstrated a diode-laser (915±10 nm) pumped Cr:forsterite-crystal-fiber amplified-spontaneous-emission (ASE) light source. Using a 22 mm-long fiber, a 3-dB bandwidth of 168 nm, a peak wavelength of 1107 nm, and a CW power of 25 μW were obtained under a pump power of 1.12 W in early results.If used as OCT light source, would be about 3 μm.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 第二章 Cr:forsterite的晶體特性與寬頻光源特性 6 2.1 Cr:forsterite晶體特性分析 6 2.2 Cr:forsterite的能階模型與吸收及放射輻射頻譜 11 2.3 Cr4+:forsterite ASE寬頻光源 12 2.4 光在晶體光纖中之傳輸 16 第三章 晶體光纖生長與元件製備 22 3.1晶體生長架構與方法 22 3.1.1雷射加熱基座生長法 23 3.1.2 側鍍Cr2O3 26 3.1.3 製作纖衣結構 26 3.1.4 LHPG法生長晶體光纖的優點 29 3.2晶體光纖之金屬包覆 31 3.3元件之研磨與拋光 34 3.4電子微探儀樣品製作 37 第四章 實驗方法與結果 40 4.1 Cr:forsterite晶體光纖的晶格結構與 晶格常數分析 40 4.1.1 X光單晶繞射儀原理 40 4.1.2 晶格結構與晶格常數分析與比較 42 4.2 鉻離子濃度分析 44 4.2.1 電子微探儀原理 44 4.2.2 鉻離子濃度分析與比較 49 4.3 Cr:forsterite單纖衣晶體光纖光學折射率量測 與分析 59 4.3.1 折射率量測架構 59 4.3.2 量測結果與分析 60 4.4 Cr:forsterite晶體光纖ASE光源特性量測 62 4.4.1 ASE光源功率與光譜量測架構 62 4.4.2 量測結果與分析 63 第五章 結論與未來展望 67 參考文獻 71 附錄:自動ASE光源功率量測程式 77

    參考文獻
    [1] M. G. Pomper, “Molecular imaging: an overview,” Acad. Radiol., 8, 1141 (2001).

    [2] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., 26,1603 (1987).

    [3] B. Danielson and C. Whittenberg, “Guided-wave with micrometer resolution,” Appl. Opt., 26, 2836 (1987).

    [4] D. Engin, “Complex optical low coherence reflectometry with tunable source,” IEEE Photon. Technol. Lett., 16, 1346 (2004).

    [5] D. Anderson and F. Bell, “Optical time-domain reflectometry,” Tektronix Inc., Wilsonville (1997).

    [6] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J.Fujimoto, “Optical coherence tomography,” Science, 254, 1178 (1991).

    [7] A. M. Rollins, M. V. Sivak, S. Radhakrishnan, J. H. Lass, D.Huang, K. D. Cooper, and J. A. Izatt, “Emerging clinical applications of optical coherence tomography,” Opt. Photon. News, 13, 36 (2002).

    [8] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol., 113, 325(1995).

    [9] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol., 37, 958 (1997).

    [10] P. Flournoy, R. McClure, and G. Wyntjes, “White-light I interferometric thickness gauge,” Appl. Opt., 11, 1907 (1972).

    [11] B.R. Wu, C.F. Lin, L.W. Laih, and T.T. Shih, "Extremely broadband InGaAsP/InP superluminescent diodes, " Electron. Lett., 36, 2093 (2000).

    [12] J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam, "Broader and flatter suppercontinuum spectra in dispersion-tailored fibers, "Technical Degist, 32 (1997).

    [13] Y. Shi and O. Poulsen, " High-power broadband single mode Pr3+-doped fibersuperfluorescence light source, " Electron. Lett., 29, 1945 (1993).

    [14] B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, " Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography, " Opt. Lett., 21, 1839 (1996).

    [15] R. S. Feigelson, W. L. Kway, and R. K. Route, " Single crystal fibers by the laser-heated pedestal growth method," Opt. Eng., 24, 1102 (1985).

    [16] J. S. Haggerty, "Production of fibers by a floating zone fiber drawing technique," Final Report NASA-CR-120948, May (1972).

    [17] C. A. Burrus and J. Stone, " Single-crystal fiber optical devices: A Nd:YAG fiber laser, " Appl. Phys. Lett., 26, 318 (1975).

    [18] M. M. Fejer, G. A. Magel, and R. L. Byer, " High-speed high-resolution fiber diameter variation measurement system, " Appl. Opt., 24, 2362 (1985).

    [19] S. Sudo, A. Cordova-Plaza, R. L.Byer, and H. J. Shaw, " MgO: LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding, " Opt. Lett., 12, 938 (1987).

    [20] Cz. Koepke, K. Wisniewski, and M. Grinberg, "Excited state spectroscopy of chromium ions in various valence states in glass," J. of Alloys and Compounds, 341, 19 ( 2002).

    [21] U. Hommerich, X. Wu, and V. R. Davis, " Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te, " Opt. Lett., 22, 1180 (1997).

    [22] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev " CW and pulsed Cr2+:ZnS and ZnSe microchip lasers, " Technical Digest, Conference on Lasers and Electro-Optics, 120 (2002).

    [23] J. McKay, K. L. Schepler and G. C. Catella, "Efficient grating-tuned mid-infrared Cr2+:CdSe laser," Optics Letters, 24, 1575 (1999).

    [24] S. Kuck, K. Petermann, and G. Huber, "Spectroscopic investigation of the Cr4+-center in YAG, " OSA Proceedings on Advanced Solid-State Lasers, 10, 92 (1991).

    [25] Al. A. Kaminskii, " Laser crystal,"1st ed, Springer-Verlag Berlin Heidelberg New York, pp. 241, 381, 382 (1981).

    [26] S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, " Tunable picosecond all solid-state Cr:LiSAF laser, " IEEE, IMTC’94, 937 (1994).

    [27] Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, " Tunable Cr4+:YSO Q-switched Cr:LiCAF laser," J. of Quantum Electron., 31, 657 (1995).

    [28] T. Fujii, M. Nagano, and K. Nemoto, "Spectroscope and laser oscillation characteristics of high Cr4+-doped forsterite, " J. of Quantum Electron., 32, 1497 (1996).
    [29] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, "Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5, " OSA Proceedings on Advanced Solid-State Lasers, 15, 334 (1993).

    [30] V. Shcheslavskiy, N. Zhavoronkov, V. Petrov, F. Noack, and M. Bouvier, "Kilohertz gain-switched laser operation and femtosecond regenerative amplification in Cr:forsterite" IEEE J. of quantum electro., 35, 1123 (1999).

    [31] N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kück, K. Petermann, and G. Huber, " Excited-state absorption and stimulated emission measurements in Cr4+:forsterite, " J. of Lumin. 75, 319 (1997).

    [32] 李建木, "長波段放大自發性輻射光纖光源之研究," 碩士畢業論文,國立中山大學, 2002.

    [33] W. K. Burns, C. Chen and R. P. Moeller, "Fiber-optic gyroscopes with broad-band sources," IEEE/OSA J. Lightwave Technol., vol. LT-1, 98 (1983).

    [34] K. Takada, T. Kitagawa, W. Shimizu, and M. Horiguchi, "High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fiber source and erbium-doped power amplifier," Electron. Lett., 29, 365 (1993).

    [35] N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, " Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite, " Opt. Lett., 23, 1028 (1998).

    [36] B. Dussardier, Valerie Felice, "Cr4+-doped silica- based optical fibers fluorescence from 0.8 μm to 1.7 μm," Gerard Monnom Lab. De la Physique de la Matiere Condensee, France, Optical Society of America, paper MB18-1 (2001).
    [37] G. Keiser, “Optical Fiber communications, ” 3rd ed, McGraw-Hill, Ch. 2, Ch. 3 (2000).

    [38] G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley (1997).

    [39] M. M. Fejer, "Crystal fibers: Growth dynamics and nonlinear optical interactions," Ph.D. dissertation, Standard University, Standford, CA (1986).

    [40] M. J. F. Digonnet, C. J. Gaeta, D. O’Meara, and H. J. Shaw, "Clad Nd:YAG fiber for laser applications," IEEE/OSA J. Lightwave Technology, LT-5, 642 (1987).

    [41] G. A. Magel, M. M. Fejer, and R. L. Byer, " Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3, " Appl. Phys. Lett., 56, 108 (1990).

    [42] L. Hesseling, and S. Redfield, "Photorefractive holographic recording in strontium barium niobate fiber, " Opt. Lett., 13, 877 (1988).

    [43] R. S. Feigelson, D. Gazit, and D. K. Fork, " Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method, " Science, 240, 1642 (1988).

    [44] 張金倉,霍玉晶,何豫生,"激光加熱浮區生長強織構高溫超導晶纖的研究",中國激光,第20卷,第8期 (1993).

    [45] 許樹恩,吳泰伯, X 光繞射原理與材料結構分析 (1996).
    [46] 陳力俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電子顯微鏡學 (1990 ).
    [47] J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao, S.Y. Tu, S.L. Huang, "Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers, " J. of Crystal Growth, 274, 522 (2005).

    [48] 陳建成, "雙纖衣摻鉻釔鋁石榴石晶體光纖之螢光光譜研究," 博士畢業論文,國立中山大學 (2006).

    無法下載圖示 全文公開日期 2014/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE