簡易檢索 / 詳目顯示

研究生: 蕭仁豪
JEN-HAO - HSIAO
論文名稱: 應用波長選擇開關於無線光通訊之研究與實現
Experimental Implementation of Optical Wireless Access Node using Wavelength Selective Switch
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 李三良
San-Liang Lee
廖顯奎
Shien-Kuei Liaw
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 197
中文關鍵詞: 矽基液晶分波多工技術波長選擇開關無線光通訊技術
外文關鍵詞: Liquid Crystal on Silicon, Wavelength Division Multiplexing, Wavelength Selective Switch, Optical Wireless Communication
相關次數: 點閱:369下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用矽基液晶元件作為空間光調變器,進行應用於無線光通訊雙向傳輸接取節點系統之研究與實現。
    本論文首先分別針對使用低密度分波多工技術及高密度分波多工技術之接取系統進行上載鏈路方向與下載鏈路方向之系統設計,續而透過使用ZEMAX光學軌跡追蹤模擬軟體進行系統模擬與效能分析。從系統模擬結果與理論之分析,本節點系統之設計具備使用高密度分波多工之技術,因此在增加使用波長之數量將能有效提升接取系統之效能為前提下,本論文採用高密度分波多工技術,以C-band 100 GHz為波長之間隔,使用連續八個波長進行傳輸距離為2.5公尺之雙向傳輸接取節點系統之實現。最後並藉由使用電光調變器上載2.5Gbps訊號至可調式雷射光源,對本論文所實現之雙向傳輸接取節點系統進行數據傳輸測試。
    從系統損耗之分析得知本論文所實現之雙向傳輸接取節點系統之功率損耗依使用不同之波長,在上載鏈路方向與下載鏈路方向分別為16.27~20.85dB與15.95~24.11dB之間。而從數據傳輸測試之結果可知在上載鏈路方向,每一通道所量測到的誤碼率皆小於〖10〗^(-12),而在下載鏈路方向除了擴大光斑大小會導致部分通道所量測到的誤碼率為〖10〗^(-9)外,其餘通道所量測到的誤碼率仍都是維持小於〖10〗^(-12)。

    本論文授權指導教授用於論文發表、專利申請及各機關計畫之申請


    In this thesis, a Liquid Crystal on Silicon (LCoS)-based device was used as a Spatial Light Modulator (SLM) to experimentally implement a bidirectional access node for the application in optical wireless communications.
    From our research, the system level node architecture design for the application either in the uplink and downlink transmission of optical wireless communications system was conducted through the utilization of Coarse Wavelength Division Multiplexing (CWDM) and Dense Wavelength Division Multiplexing (DWDM) transmission technology respectively. The optical system performance was evaluated through ZEMAX ray tracing simulation program and the results shown that the proposed access node architecture is capable of using DWDM transmission technology. In the experimental implementation of the proposed access node architecture, DWDM-based eight wavelengths with a channel spacing of 100 GHz were used. An indoor optical wireless communication system at a transmission distance of 2.5 meters was established to evaluate the performance of the proposed access node architecture. Digital transmission tests were also performed at a data transmission rate of 2.5 Gbps.
    According to the experimental measurements, the system light losses were analyzed and the results shown that depending on the use of different wavelength, the proposed access node architecture has a light loss of 16.27dB ~ 20.85dB in the uplink transmission and 15.95dB ~ 24.11dB in the downlink transmission. In the digital transmission test, the bit error ratio (BER) of each wavelength received in the uplink transmission were all less than 〖10〗^(-12) and in the downlink transmission, except that some wavelengths have a BER of 〖10〗^(-9) due to the expanding of their spot sizes at the receiver, the rest of the other wavelengths were all have a BER less than 〖10〗^(-12).

    目錄 摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 無線光通訊技術發展現況及相關文獻 1.3 研究動機與目的 1.4 論文架構 第二章 無線光通訊技術之架構 2.1 系統發射端(TX) 2.1.1 光源種類 2.1.2 光源波段選擇 2.1.3 雷射光源安全規範 2.1.4 光纖種類 2.1.5 幾何光學解析透鏡原理 2.1.6 縮束架構(Beam Reducer)&擴束架構(Beam Expander) 2.1.7 雷射波束準直後之傳播特性 2.2 傳輸通道 2.3 系統接收端(RX) 2.3.1 檢光器(Photodiode) 2.3.2 幾何損耗(Geometric Loss) 2.4 空間光調變器(Spatial Light Modulator,SLM)於無線光通訊系統之應用 2.4.1 繞射元件之介紹 2.4.1.1 繞射光柵(Diffraction Grating)之分類與選擇 2.4.1.2 繞射元件之工作原理 2.4.1.3 反射式相位光柵(Phase Only Reflective Grating) 2.4.2 使用矽基液晶元件之空間光調變器(LCoS SLM)之工作原理與限制 2.4.2.1 使用矽基液晶元件之空間光調變器(LCoS SLM)為動態繞射元件之限制 2.4.2.2 使用矽基液晶元件(LCoS Device)實現相位型閃耀式光柵(Phase Only Blazed Grating)之效能與限制 第三章 實驗架構之設計與模擬 3.1 架構一:基於低密度分波多工(Coarse Wavelength Division Multiplexing ,CWDM)之室內無線光通訊系統節點設計 3.1.1 下載鏈結(Downlink)之系統節點架構設計與模擬 3.1.2 上載鏈結(Uplink)之系統節點架構設計與模擬 3.1.2.1 上載鏈結(Uplink)系統節點之一維接收架構設計與模擬 3.1.2.2 上載鏈結(Uplink)系統節點之二維接收架構設計與模擬 3.1.3 架構一小結: 3.2 架構二:基於高密度分波多工(Dense Wavelength Division Multiplexing ,DWDM)之室內無線光通訊系統節點設計 3.2.1 下載鏈結(Downlink)之系統節點架構設計與模擬 3.2.2 上載鏈結(Uplink)之系統節點架構設計與模擬 3.2.2.1 上載鏈結(Uplink)系統節點之一維接收架構設計與模擬 3.2.2.2 上載鏈結(Uplink)系統節點之二維接收架構設計與模擬 3.2.3 架構二小結: 3.3 本章結論 第四章 基於DWDM之無線光通訊系統節點之實現 4.1 實驗架構 4.1.1 上載鏈路(Uplink)系統架構之實現 4.1.2 下載鏈路(Downlink)系統架構之實現 4.2 元件與系統損耗特性分析與量測 4.2.1 光學元件個別損耗量測與分析 4.2.2 矽基液晶元件繞射效率及損耗特性量測與分析 4.2.3 系統整體損耗量測與分析 4.2.3.1 上載鏈路方向之系統損耗量測 4.2.3.2 下載鏈路方向之系統損耗量測 4.3 系統總損耗分析 4.4 矽基液晶元件切換速度量測 4.5 數據傳輸測試 4.5.2 上載鏈路(Uplink)方向之數據傳輸測試結果 4.5.3 下載鏈路(Downlink)方向之數據傳輸測試結果 4.6 本章結論 第五章 結論與未來改善 5.1 結論 5.2 未來改善 參考文獻 附錄

    [1] Feng Feng, H. Page, R.V. Penty, I.H. White, T.D. Wilkinson, N. Michel, M. Calligaro, Y. Robert, O. Parillaud and M. Krakowski, "Free space optical wireless communications using directly modulated two-electrode high brightness tapered laser diode," Electronics Letters, vol. 48, no. 5, pp. 281-283, March 1 2012.
    [2] W. S. Chan, "Free-space optical communications", J. Lightw. Technol., vol. 24, pp. 4750-4762, 2006.
    [3] D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions", IEEE Commun. Mag., vol. 42, no. 5, pp. S2-S7, 2004.
    [4] P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presby and G. E. Tourgee, "High power optical amplifier enable 1550 nm terrestrial free-space optical data-link operating @ 10 Gb/s", Proc. MILCOM, vol. 1, pp. 687-689, 1999.
    [5] A. Belmonte and J. M. Kahn, "Capacity of coherent free-space optical links using diversity-combining techniques", Opt. Exp., vol. 17, pp. 12601-12611, 2009.
    [6] D. J. T. Heatley, D. R. Wisely, I. Neild and P. Cochrane, "Optical wireless: the story so far," IEEE Communications Magazine, vol. 36, no. 12, pp. 72-74, 79-82, Dec 1998.
    [7] Hoa Le Minh, Dominic O’Brien, Grahame Faulkner, Olivier Bouchet, Mike Wolf, Liane Grobe, and Jianhui Li, "A 1.25-Gb/s Indoor Cellular Optical Wireless Communications Demonstrator," IEEE Photonics Technology Letters, vol. 22, no. 21, pp. 1598-1600, Nov.1, 2010.
    [8] K. Wang, A. Nirmalathas, C. Lim and E. Skafidas, "4x12.5 Gb/s WDM Optical Wireless Communication System for Indoor Applications," Journal of Lightwave Technology, vol. 29, no. 13, pp. 1988-1996, July1, 2011.
    [9] K. Wang, A. Nirmalathas, C. Lim and E. Skafidas, "Experimental Demonstration of a Full-Duplex Indoor Optical Wireless Communication System," IEEE Photonics Technology Letters, vol. 24, no. 3, pp. 188-190, Feb.1, 2012.
    [10] F. Feng, I. H. White and T. D. Wilkinson, "Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM," Journal of Lightwave Technology, vol. 31, no. 12, pp. 2001-2007, June15, 2013.
    [11] 王懷慶,“無線光通訊系統之擴束設計量測與應用”,國立台灣科技大學碩士論文,2015,1月。
    [12] M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn., CRC Press, Boca Raton, FL 2001.
    [13] W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals, Springer, Berlin 1999.
    [14] RF Wireless World, “LED vs Laser diode | Difference between LED and Laser diode,”http://www.rfwireless-world.com/Terminology/LED-vs-Laser.html, July 2016.
    [15] 呂宛蒨,“160 Gbit/s 雙向分波多工之無線光通訊設計與系統傳輸”,國立台灣科技大學碩士論文,2011,6月。
    [16] S. Ten, "Ultra low-loss optical fiber technology," 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, pp. 1-3, 2016.
    [17] Peter P. Smyth, Philip L. Eardley, Kieran T. Dalton, David R. Wisely, Paul McKee, David Wood, “ Optical wireless: a prognosis. Proc.”, SPIE 2601, Wireless Data Transmission, 212, 1995.
    [18] 李培德,“雷射安全措施研究”,國立台灣大學碩士論文,2006,1月。
    [19] 楊國輝,“雷射原理與量測”,第三章,五南圖書公司,台北市,2002。
    [20] ITU-T telecommunication standardization sector of ITU, “Characteristics of a single-mode optical fibre and cable”, G.652, Nov 2009.
    [21] 李楊漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良、趙亮琳,“光纖通訊網路”,五南圖書出版股份有限公司,臺北,2007。
    [22] H. H. Chou, T. D. Wilkinson, N. Collings, W. A. Crossland and H. T. Chou, “Implementation of coarse wavelength division multiplexing multi-wavelength routing switch core for storage area networks.”, IET Optoelectronics., Vol. 4, No.2, pp.64-77, 2010.
    [23] P. LoPresti, H. Refai and J. Sluss, "Adaptive power and divergence to improve airborne networking and communications," Digital Avionics Systems Conference, 2005. DASC 2005. The 24th, Vol. 1 pp. 1.B.1-1.1-6, 2005.
    [24] J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proceedings of the IEEE, vol. 85, no. 2, pp. 265-298, Feb 1997.
    [25] 郭燦輝,光通訊主動元件之應用趨勢,光電產業與技術情報,17期,P29 – 33,1998。
    [26] D. Zhou, P. G. LoPresti and H. H. Refai, "Enlargement of Beam Coverage in FSO Mobile Network," Journal of Lightwave Technology, vol. 29, no. 10, pp. 1583-1589, May15, 2011.
    [27] ThorLABS, https://www.thorlabs.hk/newgrouppage9.cfm?objectgroup_id=8627, July 2016.
    [28] Goodman, Joseph W, “Introduction to fourier optics.”, Englewood, Colo., 3rd ed, 2005.
    [29] Lu, Tianxin, Collings, Neil, Robertson, Brian and Chu, Daping, “Design of a low-cost and compact 1 x 5 wavelength-selective switch for access networks.”, Applied Optics., Vol.54, No.30, pp.8844-8855, 2015.
    [30] Jasper Display Corp., http://www.jasperdisplay.com/index.html, July 2016.
    [31] Z, Zichen, Y, Zheng and C, Daping, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices.”, Light Sci Appl., Vol.3, pp.1-10, 2014.
    [32] S. Ahderom, M. Raisi, K. Lo, K. E. Alameh and R. Mavaddat, “Applications of liquid crystal spatial light modulators in optical communications.”, High Speed Networks and Multimedia Communications 5th IEEE International Conference on., pp. 239-242, 2002.
    [33] ITU-T telecommunication standardization sector of ITU, “Spectral grids for WDM applications: CWDM wavelength grid”, G.694.2, Dec 2003.
    [34] ThorLABS, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7537, Nov 2016.
    [35] Newport,
    https://www.newport.com/f/818-b-biased-photodetectors, Nov 2016.
    [36] Newport,
    https://www.newport.com/p/F-MFD-C-1FC, Nov 2016.
    [37] ITU-T telecommunication standardization sector of ITU, “Spectral grids for WDM applications: DWDM frequency grid”, G.694.1, Feb 2012.
    [38] Electro-Optics Technology, Inc.,
    http://www.eotech.com/cart/24/photodetectors/%3C2ghz-amplified-photodetectors/et-3000a---2ghz-amplified-photodetector, Jun 2017.

    無法下載圖示 全文公開日期 2022/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE