簡易檢索 / 詳目顯示

研究生: 蔡承佑
Cheng-Yu - Tsai
論文名稱: 應用於5G之短距離微投影通訊架構之研究與實現
Experimental Implementation of Micro-Projection enabled Short-Range Communication Architecture for 5G
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 李三良
San-Liang Lee
廖顯奎
Sian-Kui Liaw
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 120
中文關鍵詞: 無線光通訊發光二極體空間光調製器矽基液晶
外文關鍵詞: Optical wireless communication, Light-emitting diodes, Spatial light modulators, Liquid Crystal on Silicon
相關次數: 點閱:372下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用矽基液晶元件為空間光調變器分別進行基於振幅調變及相位調變之微投影通訊架構之研究與實現。
    在振幅調變之微投影通訊架構中,本論文使用RGB LED為光源,透過極化調變影像系統之設計來分別進行投影與通訊功能之執行,並透過基頻調變訊號之設計與應用來進行此微投影通訊架構之光數據傳輸測試。從量測結果可以發現使用16-QAM的調變技術,此微投影通訊架構可以在投影與通訊同時執行時,在位元錯誤率為〖10〗^(-3)時達到接近1 Gbps的資料傳輸率。
    在相位調變之微投影通訊架構中,本論文使用藍光雷射作為光源,並提出GS演算法之優化程序來進行電腦全像之設計以使用空間光調變器進行多點通訊之實現。在多點通訊之實現中,本論文針對一維排列之三點、六點以及二維排列之四點、九點分別進行短距離與長距離之能量分布均勻度之分析。從量測結果可以發現,透過本論文所提之GS演算法優化程序,可以有效改善多點傳輸能量分布之均勻度,進而在光數據傳輸測試中,可以有效提升接收端中各點可以傳輸之最低資料傳輸率。


    In this thesis, the research of amplitude modulated and phase modulated micro-projection enabled short-range communication architecture which offers simultaneous micro-projection and high-speed data transmission, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G is presented and experimentally demonstrated.
    In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture.
    In amplitude modulated micro-projection architecture, the results demonstrated that an aggregative data transmission rate of 892 Mbps and 900 Mbps at a BER of 10-3 can be achieved by using RGB-LEDs with 16-QAM modulation scheme when data transmission were performed with and without micro-projection simultaneously
    In phase modulated micro-projection architecture, multi-spot communication were also investigated and an optimized Gerchberg-Saxton Algorithms was proposed to improve the spot uniformity and the results shown that a significant performance improvement has achieved either in a one-dimension or two-dimension spot array generations.

    目錄 摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 導論 1.1 前言 1.2 研究動機 1.3 論文架構 第二章 微投影通訊架構 2.1 應用於可攜式通訊裝置之微投影技術 2.1.2 數位光處理技術(Digital Light Processing) 2.1.3 液晶投影(Liquid Crystal Display) 2.1.4 矽基液晶(Liquid Crystal on Silicon) 2.1.5 投影技術比較 2.2 應用於行動裝置之短距離通訊技術 2.2.1 藍芽(Bluetooth) 2.2.2 近場通訊(Near Field Communication) 2.2.3 可見光通訊(Visible Light Communication) 2.2.4 短距離通訊之應用及限制 2.3 結合可見光通訊之微投影架構 第三章 使用振幅調變之微投影通訊架構之實現 3.1 振幅調變投影架構介紹 3.2 光數據傳輸訊號設計與生成 3.2.1 NRZ_OOK訊號 3.2.2 M-PAM訊號 3.2.3 眼圖分析及位元錯誤率計算 3.2.4 PSK訊號 3.2.5 QAM訊號 3.2.6 星座圖分析及位元錯誤率計算 3.2.7 訊號生成及解調分析 3.3 振幅調變微投影架構之純光數據傳輸測試 3.3.1 實驗架構之設計 3.3.2 紅光測試結果 3.3.3 綠光測試結果 3.3.4 藍光測試結果 3.3.5 資料傳輸率之比較 3.4 振幅調變微投影架構結合光濾波器之純光數據傳輸測試 3.4.1 實驗架構之設計 3.4.2 紅光測試結果 3.4.3 綠光測試結果 3.4.4 藍光測試結果 3.4.5 資料傳輸率之比較 3.5 振幅調變微投影架構之投影結合光數據傳輸測試 3.5.1 實驗架構之設計 3.5.2 紅光測試結果 3.5.3 綠光測試結果 3.5.4 藍光測試結果 3.5.5 資料傳輸率之比較 3.6 振幅調變微投影架構之投影結合使用光濾波器之光數據傳輸測試 3.6.1 實驗架構之設計 3.6.2 紅光測試結果 3.6.3 綠光測試結果 3.6.4 藍光測試結果 3.6.5 資料傳輸率之比較 3.7 實驗結果與分析 第四章 使用相位調變之微投影通訊架構之實現 4.1 相位調變投影架構介紹 4.2 繞射理論回顧與應用 4.2.1 近場繞射公式-Fresnel 4.2.2 遠場繞射公式-Fraunhofer 4.2.3 動態繞射光學元件之應用 4.2.4 效能之評估 4.3 演算法介紹 4.3.1 演算法概述 4.3.2 GS演算法 4.3.3 GS演算法之優化 4.3.4 Gerchberg-Saxton (GS)演算法及其優化模擬結果分析 4.4 系統性能評估之實驗架構 4.4.1 雷射光源設計 4.4.2 空間光調製器特性分析 4.4.3 短距離多點均勻度量測架構設計 4.4.4 遠距離通訊架構設計 4.4.5 Gerchberg-Saxton (GS)演算法實際量測結果 4.5 訊號傳輸測試 4.5.1 系統頻寬量測 4.5.2 Fresnel聚焦訊號傳輸測試 4.5.3 點對多點光數據傳輸測試 4.5.4 實驗結果之分析與比較 第五章 結論 5.1 結果與討論 5.2 未來改善 重要參考文獻

    [1]. “智慧型手機市場滋養,嵌入式微型投影躍然舞台”。新通訊元件雜誌,127期。http://www.2cm.com.tw/technologyshow_content.asp?sn=1108310010, 2016.
    [2]. Texas Instruments. “DLP technology.” http://www.ti.com.tw/articles/detail.asp?sno=18, 2016.
    [3]. Texas Instruments. “DLP product & MEMS.” http://www.ti.com/lsds/ti/analog/dlp/overview.page, 2016.
    [4]. Texas Instruments. “Application Report.” http://www.ti.com/lit/an/dlpa022/dlpa022.pdf, 2016.
    [5]. ePrice. “實用的噱頭:LG GW825v投影智慧手機” http://www.eprice.com.tw/mobile/talk/4531/4408602/1/rv/lg-gw825v-review/, 2016.
    [6]. ePrice. “三星GALAXY Beam內建投影功能,亮眼登台” http://www.eprice.com.tw/mobile/talk/4523/4787763/1/rv/samsung-i8530-galaxy-beam-launch/, 2016.
    [7]. S. C. Shin, Y. Jung, T. J. Ahn, S. S. Jeong, S. G. Lee and K. Y. Choi, "The Compact Systems Design Based on DMD and the Straight Line 2-Channel LED for a Mobile Embedded Pico Projector," Journal of Display Technology, vol. 8, no. 4, pp. 219-224, April 2012.
    [8]. Sharp. “液晶的世界” http://home.hiroshima-u.ac.jp/yhiraya/er/Rmin_B.html, 2016.
    [9]. CTIMES. “微型投影的技術剖析” https://www.ctimes.com.tw/DispArt/tw/PBS/color-sequential/DLP/HTPS/Rainbow-Effect/0908041211WW.shtml, 2016.
    [10]. 光電科技工業協進會。 “DLP投影機技術與產品動態” https://www.pida.org.tw/optolink/optolink_pdf/87111810.pdf, 2016.
    [11]. Robot Vision Lab. “Projector Technologies” https://rvlab.icg.tugraz.at/project_page/project_microsense/project_microsense_details.htm, 2016.
    [12]. “微型投影機商品化,LCoS挑戰DMD主流地位”。新通訊元件雜誌104期。http://www.2cm.com.tw/technologyshow_content.asp?sn=0910200007, 2016.
    [13]. HOME THEATER NETWORK. “ LCoS, HD-ILA, SXRD” http://www.hometheaternetwork.com/HTN_HDTVlcos.htm, 2016.
    [14]. 電子發燒友。“LCoS微型元件介紹” http://www.elecfans.com/video/base/2009050957699.html, 2016.
    [15]. PROJECTOR CENTROL. “3M MPro 120 Projector” 2016年12月9日,取自http://www.projectorcentral.com/3M-MPro120.htm
    [16]. 小金電腦工作室。“升渱光電行動音樂微型投影機MP380” http://www.zore313.xcom.tw/products/?id=32, 2016.
    [17]. E. Buckley, “Holographic laser projection technology,” Inf. Display, vol. 24, no. 12, pp. 22–25, Dec. 2008.
    [18]. E. Buckley, “Holographic laser projection technology,” Proc. SID Symp., no. 70.2, pp. 1074-1078, 2008
    [19]. E. Buckley, "Holographic Laser Projection," Journal of Display Technology, vol. 7, no. 3, pp. 135-140, March 2011.
    [20]. F. Feng, I. H. White and T. D. Wilkinson, "Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM," in Journal of Lightwave Technology, vol. 31, no. 12, pp. 2001-2007, June15, 2013.
    [21]. Bluetooth. “WHAT IS BLUETOOTH” . https://www.bluetooth.com/what-is-bluetooth-technology, 2016.
    [22]. ORACLE. “An Introduction to Near-Field Communication and the Contactless Communication API”. http://www.oracle.com/technetwork/articles/javame/nfc-140183.html, 2016.
    [23]. B. Fahs, Bassem Fahs, Jeffrey Chellis, Matthew J. Senneca, Asif Chowdhury, Sagar Ray, Ali Mirvakili, Brandon Mazzara, Yiwen Zhang, Javad Ghasemi, Yun Miao, Payman Zarkesh-Ha, Valencia J. Koomson, Mona M. Hella , "A 6-m OOK VLC Link Using CMOS-Compatible p-n Photodiode and Red LED," IEEE Photonics Technology Letters, vol. 28, no. 24, pp. 2846-2849, Dec.15,2016.
    [24]. S. Rajbhandari, Hyunchae Chun, Granarne Faulkner, Katherine Cameron, Aravind V. N. Jalajakumari,Robert Henderson, Dobroslav Tsonev, Muhammad Ijaz, Zhe Chen, Harald Haas, Enyuan Xie, Jonathan J. D. McKendry, Johannes Herrnsdorf, Erdan Gu, Martin D. Dawson, Dominic O'Brien, "Imaging-MIMO visible light communication system using μLEDs and integrated receiver," IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014, pp. 536-540, 2014.
    [25]. H. Chun, Sujan Rajbhandari, Grahame Faulkner, Dobroslav Tsonev, Enyuan Xie, Jonathan James Donald McKendry, Erdan Gu, Martin D. Dawson, Dominic C. O'Brien, Harald Haas, "LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications," Journal of Lightwave Technology, vol. 34, no. 13, pp. 3047-3052, July1, 1 2016.
    [26]. J. Grubor, S. Randel, K. D. Langer and J. W. Walewski, "Broadband Information Broadcasting Using LED-Based Interior Lighting," Journal of Lightwave Technology, vol. 26, no. 24, pp. 3883-3892, Dec.15, 2008
    [27]. F. Xiong, "Digital modulation techniques," Artech House, Boston, London, 2000.
    [28]. Shafik, R.A.; Rahman, S.; Islam, R.; Ashraf, N.S., "On the error vector magnitude as a performance metric and comparative analysis," Emerging Technologies, 2006. ICET '06. International Conference, vol., no., pp.27-31, 13-14 Nov. 2006
    [29]. R. A. Shafik, M. S. Rahman, A. R. Islam and N. S. Ashraf, "On the error vector magnitude as a performance metric and comparative analysis," 2006 International Conference on Emerging Technologies, Peshawar, 2006, pp. 27-31.
    [30]. J.W Goodman, Introduction to Fourier Optics, 3rd Ed., New York : Roberts And Company, 2005
    [31]. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972)
    [32]. S. Kirkpatrik, C. D. Gelatt, Jr, and M. P. Vecchi,“Optimization by simulated annealing,” Science, vol. 220, no. 4598,1983,pp. 671-680
    [33]. David Mendlovic, Zeev Zalevsky, Gal Shabtay, and Emanuel Marom, "High-efficiency arbitrary array generator," Appl. Opt. 35, 6875-6880 (1996)
    [34]. Osram. “Blue Laser Diode PL450B Datasheet”, http://docs-europe.electrocomponents.com/webdocs/1103/0900766b81103c2a.pdf, 2016

    無法下載圖示 全文公開日期 2022/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE