簡易檢索 / 詳目顯示

研究生: 李欣哲
Hsin-Che Lee
論文名稱: C band 光纖光源、光通訊及光感測之設計與實證
Design and Demonstration of C-band Fiber Optical Light Source and Optical Communication and Optical Sensing
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 葉建宏
Chien-Hung Yeh
林楚軒
Chu-Hsuan Lin
徐世祥
Shih-Hsiang Hsu
李穎玟
Yin-Wen Lee
宋峻宇
Jiun-Yu Sung
游易霖
Yi-Lin Yu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 110
中文關鍵詞: 光纖通訊光纖感測分波多工單縱模光纖雷射布拉格光纖光柵長週期光纖光柵
外文關鍵詞: Optical fiber communication, optical fiber sensing, wavelength division multiplexing, single longitudinal mode, Fiber Laser, long-period fiber grating, Fiber Bragg grating
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的演進,光纖通訊在電信科技的應用逐漸普及,其應用上不僅力求快速、安全,高容量傳輸也是重要的考量因素。因此,具有高速且高頻寬特性的光纖通訊逐漸獲得重視,其中關鍵技術的研究與開發使得資料傳輸量相對倍增,進而帶動整體光纖通訊網路的發展,以因應日漸俱增的傳輸需求。在應用上,光纖放大器可應用於光纖通訊網路,而光纖雷射則是可應用在生醫技術和光纖感測等。本論文開發一種C Band的單縱模摻鉺光纖雷射。通過在串聯或並聯架構中利用可飽和吸收體和兩個子環共振腔抑制了線性腔中空間燒孔引起的多縱模振盪。然後將雷射器調製至10Gb/s,用於眼圖測量,以證明達到單縱模雷射之效果。光纖雷射的光信噪比為34.5 dB,在一小時的運行中,最大功率波動小於1.3%。這種結構緊密、成本低廉的光纖雷射具有體積小、插入損耗低的優點,具備高速光通信的潛力。
    接下來建立一套三向光纖通訊傳輸系統,去進行穩定度分析,依不同光源將架構設計為分波多工和不同波長的傳輸模式,且以不同波長的模式結合10 Gbit/s和2.5 Gbit/s電訊號傳輸,以0公里、25公里和50公里單模光纖測試,得到使用帶通濾波器而未接有色散補償可提升2-3 dB的功率償付。不同波長傳輸模式不同距離的功率償付為0.304 dB、0.595 dB及1.173 dB;在不同波長三向低速時的的功率償付,在不同距離下分別為0.101 dB、0.385 dB及0.538 dB,而10 Gbit/s和2.5 Gbit/s混成的結果,其功率償付分別為0.278 dB、0.404 dB及0.551 dB。
    另一方面,開發一種基於布拉格光柵和長週期光纖光柵的光纖雷射感測系統,用於同時測量兩個參數,其目的是同時測量液位和溫度。在長週期光纖光柵的7.5nm波長漂移中,溫度從25到50̊C變化的結果,線性R2為0.9994。布拉格光柵液位感測的靈敏度會受到溫度變化的影響,從低溫的-0.12nm/cm到高溫的-0.004nm/cm,線性度R2約為0.9967。由於雷射腔的存在,所提出的具有廣泛動態範圍的光纖雷射可用於遠端監測。
    最後,本文把開發光通訊系統與建構感測系統之經驗做結合,將無線光通訊應用於室內氣體感測。在室內氣體感測是利用不同氣體會吸收傳輸光源中不同波長的功率的特性,來感測氣體。本實驗使用 C+L band 的寬頻光源作為傳輸光源來感測氨氣,光源頻帶範圍為 1520 nm 到 1610 nm,氨氣的吸收頻譜 1520 nm 到 1562 nm,其中發射光譜與被測氣體的吸收光譜部分重合。並在接收端使用光頻譜分析儀來觀測吸收光譜的變化。在波長 1531.13 nm 時,感測氨氣濃度的靈敏度為 0.0016 mW/ppm,線性度 R2 為 0.9881。


    According to the development of the times, optical communication in telecommunication technology has become more and more popular. Its application is not only fast and safe but also high-capacity transmission. Therefore, optical communication has high performance of high speed and high frequency, and wide bandwidth attract more and more attention. The research and development of critical technologies make the data transmission more and more multiplied, thus driving the growth of the overall optical communication network to meet the increasing transmission. In applications, optical amplifiers can be used in optical communication networks, while optical lasers can be used in biomedical technologies and optical sensing.
    This dissertation develops a C-band single longitudinal mode Erbium-doped fiber laser. The multi longitudinal mode oscillation caused by spatial hole burning in the linear cavity is suppressed using a saturable absorber and two sub-ring resonators in series or parallel architecture. Then the laser is modulated to 10Gb / s for eye pattern measurement to prove the effectiveness of a single longitudinal mode laser. The optical signal-to-noise ratio of fiber laser is 34.5 dB, and the maximum power fluctuation is less than 1.3% in one-hour operation. This compact and low-cost fiber laser has the advantages of small volume and low insertion loss, and potential for high-speed optical communication.
    Next, three-way optical fiber communication transmission systems are established to analyze the stability. The architecture is designed as wavelength division multiplexing and transmission modes of different wavelengths according to different light sources. The transmission modes of different wavelengths are combined with 10 Gbit / s and 2.5 Gbit / s electrical signals. It is tested with 0 km, 25 km, and 50 km single-mode optical fiber. It is obtained that the power can be increased by 2-3 dB by using a band-pass filter without dispersion compensation. The power compensation of different wavelength transmission modes and different distances is 0.304 dB, 0.595 dB, and 1.173 dB; The power compensation of three-way low-speed at different wavelengths is 0.101 dB, 0.385 dB, and 0.538 DB, respectively at different distances, while the power compensation of 10 Gbit / s and 2.5 Gbit / S is 0.278 dB, 0.404 dB, and 0.551 dB respectively.
    On the other hand, a fiber laser sensing system based on Bragg grating and long-period fiber grating is developed to measure two parameters simultaneously. Its purpose is to measure liquid level and temperature at the same time. In the 7.5 nm wavelength drift of long-period fiber grating, the temperature ranges from 25- to 50 ̊ The linear change of R2 is 9994. The sensitivity of Bragg grating liquid level sensing will be affected by the temperature change. From -0.12nm/cm at low temperature to -0.004nm/cm at high temperature, the linearity R2 is about 0.9967. Due to the existence of a laser cavity, the proposed fiber laser with a wide dynamic range can be used for remote monitoring.
    Finally, this paper combines the experience of switching on a light-emitting communication system and constructing a sensing system and applies wireless optical communication to indoor gas sensing. Indoor gas sensing is sensing by using the characteristics that different gases will absorb the power of different wavelengths in the transmission light source. In this experiment, the broadband light source of the C + L band is used as the transmission light source to sense ammonia. The frequency band of the light source ranges from 1520- to 1610 nm. The absorption spectrum of ammonia ranges from 1520- to 1562 nm, in which the emission spectrum partially coincides with the absorption spectrum of the measured gas. At the receiving end, an optical spectrum analyzer is used to observe the absorption spectrum change. At the wavelength of 1531.13 nm, the sensitivity of sensing ammonia concentration is 0.0016 MW / ppm, and the linearity R2 is 0.9881

    摘要 III Abstract V 誌謝 VII Contents VIII List of Figures XI List of Tables XV Chapter 1 Introduction 1 1.1 Preface 1 1.2 Research Motivation 3 1.3 Thesis Framework 5 Chapter 2 Literature Review 7 2.1 Fiber Lasers 7 2.2 Fiber Amplifiers 8 2.3 Two-directional/Tri-directional Optical Communication 9 2.4 Wireless Light Sensors 12 Chapter 3 C-Band Single-Longitudinal-Mode Fiber Lasers and Sub-ring Cavity Structure 14 3.1 Theoretical Analysis of Single-Longitudinal-Mode Fiber Laser Fabrication 14 3.2 Sub-ring Cavity Structure 16 3.3 Absorber Structure 20 3.4 Analysis and Measurement of Dual Sub-ring Fiber Laser Architectures 24 3.4.1 Experimental Setup and Schematic Design 24 3.4.2 Characteristic Measurement and Results Discussion 27 Summary 32 Chapter 4 Study of Tri-Directional Transmission of Optical Communications 33 4. 1 Tri-Directional Transmission System Overview 33 4. 2 Analysis of Rayleigh Scattering 34 4. 3 Tri-Directional Optical Communication Transmission Experiment 35 4. 3. 1 Analysis of Tri-Directional Transmission System 35 4. 3. 2 Tri-Directional Power Measurement with Different Wavelengths 37 4. 4 Tri-Directional (Reconfigurable) Optical Communication Transmission Experiment 40 4. 4. 1 Analysis of Reconfigurable Transmission System 40 4. 4. 2 Reconfigurable Bit Error Rate Measurement 43 Chapter 5 Two Parameters Fiber Grating Liquid Sensing 46 5.1 Sensory Theory Analysis 46 5.1.1 LPG Sensor Refractive Index Theory Analysis 46 5.1.2 LPG Sensing Temperature Theory Analysis 48 5.1.3 FBG Sensor Water Level Theory Analysis 49 5.1.4 Two-parametric FBG Sensing Theory Analysis 52 5.2 Erbium Doped Fiber Laser Theory Analysis and Sensor Head Design 55 5.2.1 Erbium Doped Fiber Laser Theory Analysis 55 5.2.2 Two-parametric FBG Sensor Head Design 57 5.3 Experimental Results and Discussion 58 5.4 Summary 65 Chapter 6 Optical Wireless Sensors of Gas Sensing 67 6.1 Description of Ammonia (NH3) 67 6.2 Properties of Absorption Spectra 69 6.2.1 Beer's Law and Absorbance 69 6.2.2 Absorption Spectrum 70 6.3 Intensity Analysis of Light Sources 71 6.4 Sensitivity Testing and Linearity Analysis 75 Chapter 7 Conclusion and Future Work 80 7.1 Conclusion 80 7.2 Future Work 82 References 83

    [1] Al-Amri, Mohammad D., Mohamed El-Gomati, and M. Suhail Zubairy. Optics in our time. Springer Nature, 2016.
    [2] S. Reichel and R. Zengerle, “Effects of nonlinear dispersion in EDFA's on optical communication systems,” Journal of Lightwave Technology, vol. 17, no. 7, pp. 1152–1157, 1999.
    [3] H. -Y. Hsu, W. -C. Lu, H. -L. Minh, Z. Ghassemlooy, Y. -L. Yu, and S. -K. Liaw, “DWDM bidirectional wavelength reuse optical wireless transmission in 2×80 Gbit/s capacity,” 2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 21-21 Oct., 2013.
    [4] O. Akanbi, J. Yu, and G.-K. Chang, “Interleaved Bidirectional Transmission of 16 ×10-Gb/s DWDM Signals Using DPSK Modulation Format and In-line Semiconductor Optical Amplifiers,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 325–334, 2007.
    [5] T. -T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25-gbps wired/wireless optical transmission based on single sideband carriers in fabry–pérot laser diode by multimode injection locking,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2457–2464, 2009.
    [6] R. Hui, “Introduction to fiber-optic communications”. London, United Kingdom: Academic Press, 2020.
    [7] 廖顯奎譯,”光纖通訊,”高立圖書有限公司,台北,2005
    [8] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor, “Opt. Lett., vol. 31, pp.2529-2531, 2006
    [9] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of interferometric fiber-optic sensors,” Opt. Lett., vol. 31, pp. 2048-2410, 2006.
    [10] S. V. Kartalopoulos, “Introduction to DWDM technology: data in a rainbow”. Bellingham, WA: SPIE Optical Engineering Press, 2000.
    [11] A. Tzanakaki, L. Zacharopoulos, and L. Tomkos, “Optical add/drop multiplexers and optical cross-connects for wavelength routed networks,” Proceedings of 2003 5th International Conference on Transparent Optical Networks, Warsaw, Poland, June 29 - July 3, 2003.
    [12] R. Rathod, R. Pechstedt, D. J. Webb, and D. A. Jackson, “Rayleigh backscattering in optical fibers: a noise limitation and a sensing mechanism,” Tenth International Conference on Optical Fibre Sensors, Glasgow, October 11 - 13, 1994.
    [13] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol.187, no.4736, pp. 493-494, August 6, 1960.
    [14] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proceedings of IEE, vol. 13. pp. 1551-1558, 1966.
    [15] Lichtman, Eyal. "Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems." Journal of lightwave technology 13.5: 906-913, 1995.
    [16] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Opt. Lett., vol. 31, pp. 2529-2531, 2006.
    [17] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of interferometric fiber-optic sensors,” Opt. Lett., vol. 31, Pp. 2408-2410, 2006.
    [18] Z. Zhang, J. Wang, L. Wang, and X. Chen, “Bidirectional 40Gb/s/λ, 100km-reach, channel-reuse WDM-PON employing tunable optical transceiver with optical intensity detection-based wavelength management,” Optical Fiber Technology, vol. 25, pp. 51–57, 2015.
    [19] B.-H. Choi and S. -S. Lee, “The effect of AWG-filtering on a bidirectional WDM-PON link with spectrum-sliced signals and wavelength-reused signals,” Optics Communications, vol. 284, no. 24, pp. 5692–5696, 2011.
    [20] S. -K. Liaw, C. -Y. Chan, Y. Jiao, Z. Xu, H. Zhang, and Y. Li, "Reconfigurable tridirectional transmission based on optical circulators and optical switches." Optical Transmission, Switching, and Subsystems. Vol. 5281. International Society for Optics and Photonics, 2004.
    [21] B. E. A Saleh, M. C. Teich, “Fundamentals of Photonics,” New Jersey, USA:Wily-Interscience, 2007.
    [22] R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper and D. C. Hanna, ”Single-frequency yttErbium-doped fiber laser stabilized by spatial hole burning,” Opt. Lett., vol. 22, pp. 40-42, 1997.
    [23] J. Sun, X. Yuan, X. Zhang and Dexiu Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun., vol. 273, pp. 231-237, 2007.
    [24] 王祥, “線性型單縱模光纖雷射的研製,” 國立台灣科技大學碩士論文, 2010
    [25] D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol., vol. 6, 1988.
    [26] P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A, vol. 5, pp. 803-812, 1988
    [27] N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photon. Technol. Lett., vol. 11, pp. 182-184, 1999.
    [28] Lee, H. C., Lee, Y. W., Chang, J. S., & Liaw, S. K. Single-longitude-mode fiber laser implementation by using only two subring cavities in serial/parallel connection. Fiber and Integrated Optics, 38(4), 236-246, 2019.
    [29] LIEKKI™ Application Designer, Available online: http://www.nlight.net/download/lad
    [30] Das, Gautam, and John WY Lit. "Wavelength switching of a fiber laser with a Sagnac loop reflector." IEEE Photonics Technology Letters 16.1: 60-62, 2004.
    [31] S. -K. Liaw, H. Wang, K. -H. Hsu, S. -C. Lin, N. -K. Chen and C. -S. Shin and Tver’yanovich Y. "Linear-cavity fiber laser in nearly single-frequency operation using Faraday rotator mirror." Laser Physics 22.2: 437-440, 2012.
    [32] Peterka P., Honzátko P., Koška P., Todorov F., Aubrecht J., Podrazký O. and Kašík I. 2014. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping, Optics Express. 22(24):30024-30031.
    [33] Z Fan, X Zeng, C Cao, Z Feng, Z Lai, W Dang. "Novel structure of an ultra-narrow-bandwidth fibre laser based on cascade filters: PGFBG and SA." Optics Communications 368: 150-154, 2016.
    [34] M. D. Al-Amri, M. El-Gomati, and M. S. Zubairy, Optics in Our Time. Cham: Springer International Publishing, 2016.
    [35] C. -W. Oh, Z. Cao, K. A. Mekonnen, E. Tangdiongga, and A. M. J. Koonen, “Low-crosstalk full-duplex all-optical indoor wireless transmission with carrier recovery”. IEEE Photonics Technology Letters, 29(6), 539-542, 2017.
    [36] X. Zhu, & S. Kumar, “Effects of Rayleigh backscattering in single-source bidirectional fiber-optic systems using different modulation formats for downstream and upstream transmission.” Optical Fiber Technology, 14(3), 185-195, 2008
    [37] H. -S., Kim, Y. -Y., Won, Y. -H., Son, S. -K., Han, “Full colorless WDM-RoF system with simultaneous transmission of 63-GHz and baseband 1.25-Gbps data by sideband separation.” In Optical Fiber Communication Conference (p. OThO2). Optical Society of America, 2010, March.
    [38] Keiser, G. Perspectives on Lightwave Communications. In Fiber Optic Communications (pp. 1-30). Springer, Singapore, 2021.
    [39] P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” Journal of Lightwave Technology, vol. 8, no. 4, pp. 561–567, 1990.
    [40] J. P. Carvalho1, I. Terroso1, O. Frazão1, H. M. Salgado, “Optical cross-connect architectures based on fibre Bragg gratings and optical circulators,” Fourth Conference on Telecommunications. 2003.
    [41] Daniel Alfredo Chamorro Enrı´quez, Alberto R. da Cruz, and Maria Thereza M. Rocco Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination, ” Optics & Laser Technology, pp.981–986, 2012
    [42] 李杰,“長週期光纖光柵折射率傳感的研究概況”,廈門科技,59-62頁,2006。
    [43] 洪士軒,“用於液體多參數分析之新穎光纖感測架構設計”,台灣科技大學電子工程研究所碩士論文,2014。
    [44] Strobel Nick, “Nick Strobel's Astronomy Notes,” May, 2001.
    [45] 陳宣臣, “波長可調光纖光柵之研製與應用” ,台灣科技大學電子工程研究所碩士論文,2004。
    [46] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
    [47] 賴郁竹,“多參數光纖光柵液體感測研製”,台灣科技大學電子工程研究所碩士論文,2015。
    [48] Q. Mao and J. W. Y. Lit, “Multi-wavelength Erbium-doped fiber laser with active overlapping linear cavities,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
    [49] S. -K. Liaw, H. -C. Chen, and Y. -C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, 2004.
    [50] S. -W. Harun, M. -Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Lett., vol. 3, pp. 369-371, 2006.
    [51] S. -K. Liaw, W. -Y. Jang, C. -J. Wang, and K. -L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, pp. 2280-2282, 2007.
    [52] D. B. Mortimore, “Fiber loop reflectors,” IEEE/OSA Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, 1988.
    [53] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [54] 天聖金屬科技http://www.zenda.com.tw/faq/
    [55] W. -C. Kao, H. -W. Yang, C. -C. Liu, L. -T. Hsieh, H. -H. Yang, and M. -L. Lee, "Concentration of Ammonia in markets in Southern Taiwan," 2004 Conference on Sustainable Development for Environmental Resources in Taiwan, Oct, 2004.
    [56] T. -Y. Chen, C. -K. Chen, A. -L. Kuang, T. -Y. Wu, and C. Lee, "New Perspectives on Law," The Taiwan Law Review, 2012.
    [57] "Indoor Air Quality Information Network," Environmental Protection Administration, Executive Yuan.
    [58] "Hazard Data on Hazardous Substances," Occupational Safety and Health Administration, Ministry of Labor.
    [59] W. Demtroder, “Laser Spectroscopy Basic Concepts and Instrumentation”, 2nd ed., Springer-Verlag, 1996.
    [60] http://cfa-www.harvard.edu/HITRAN/
    [61] H. -C. Lee, Y. -T. Lin, D. -C. Li, S. -K. Liaw. "In-time optical wireless ammonia (NH3) sensing using C+ L band broadband source." Journal of Optoelectronics and Advanced Materials 22. January-February 2020: 12-16, 2020.
    [62] AL Myers, JM Prausnitz, “Thermodynamics of mixed-gas adsorption”, AIChE Journal, pp. 121-127, 1965.
    [63] C. -H. Yeh, J. -Y. Chen, H. -Z. Chen, J. -H. Chen and C. -W. Chow, “Stable and tunable single-longitudinal-mode Erbium-doped fiber triple-ring laser with power-equalized output”. IEEE Photonics Journal. 8(2):1500906, 2016.
    [64] S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, M. Lopez-Amo, “Dual-wavelength single-longitudinal mode fiber laser using phase-shift bragg gratings”. Ieee Journal of Selected Topics in Quantum Electronics. 20(5):0900305, 2014.
    [65] K. Guesmi, F. Bahloul, G. Semaan, Y. C. Meng, M. Salhi, F. Sanchez, Widely tunable, narrow line width and low optical noise continuous-wave all fiber Er:Yb co-doped double-clad ring laser. Journal of Optics. 19(1):015501, 2017.
    [66] L. -T. Lim, M. H. Abu Bakar, M. A. Mahdi, “Wavelength-tunable single longitudinal mode fiber optical parametric oscillator”. Optics Express. 25(5):5501-5508, 2017.
    [67] J. H. Geng, C. Spiegelberg and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry”, IEEE Photon. Technol. Lett. 17(9):1827-1829, 2008.
    [68] C. -H. Yeh, H. -Z. Chen, J. -Y. Chen, C. -W. Chow, “Use of fiber Bragg grating (FBG) for stable and tunable Erbium-doped fiber ring laser with single-longitudinal-mode output”, Laser Physics. 25(11):115101, 2015.
    [69] Y. -L Yu., S. -K. Liaw, W. -C. Hsu, M. -H. Shih, N. -K. Chen, “Single longitudinal mode YttErbium doped fiber lasers with large proposed tuning range”, Optical and Quantum Electronics. 47(2):131-137, 2015.
    [70] A Lopez-Aldaba., J. L. Auguste, R. Jamier, P. Roy, &, M. López-Amo "Simultaneous strain and temperature multipoint sensor based on microstructured optical fiber." Journal of Lightwave Technology 36.4: 910-916, 2017.
    [71] Wei Zhang, and D. J. Webb. "PMMA based optical fiber Bragg grating for measuring moisture in transformer oil." IEEE Photonics Technology Letters 28.21: 2427-2430, 2016.
    [72] J. Ascorbate, J.M. Corres, F.J. Arregui, and I.R. Matias., "Recent developments in fiber optics humidity sensors," Sensors. 17, 2017.
    [73] T. -G. Liu, J. -H. Han, and H. -F. Hu., "Optical current sensor with dual-wavelength configuration for improving temperature robustness," IEEE Photon. J. 9, 2017.
    [74] L. Bao, X. Dong, S. Zhang, C. Shen & P. P. Shum "Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber Bragg grating." IEEE Sensors Journal 18.10: 4008-4012, 2018.
    [75] G. Mueller, A. Frank, L. Yang, X. Gu, and K. Bohnert, "Temperature Compensation of Interferometric and Polarimetric Fiber-Optic Current Sensors with Spun Highly Birefringent Fiber." Journal of Lightwave Technology:1-1, 2019.
    [76] Juan David Lopez, Alex Dante, Alcides O. Cremonezi, Rodrigo M. Bacurau, Cesar C. Carvalho, Regina Célia da Silva Barros Allil, Elnatan C. Ferreira, and Marcelo Martins Werneck. "Fiber-Optic Current Sensor Based on FBG and Terfenol-D with Magnetic Flux Concentration for Enhanced Sensitivity and Linearity." IEEE Sensors Journal, 20(7), 3572-3578, 2019.
    [77] S, Dipankar, and P. Kishore. "Continuous liquid level monitoring sensor system using fiber Bragg grating." Optical Engineering 53.1:017102, 2014.
    [78] S. Khaliq, S. W. James, and R. P. Tata. "Fiber-optic liquid-level sensor using a long-period grating." Optics Letters, 26(16), 1224-1226, 2001.
    [79] Y. Huang, B. Chen, G. Chen, H. Xiao, and S. U. Khan, "Simultaneous detection of liquid level and refractive index with a long-period fiber grating-based sensor device." Measurement Science and Technology, 24(9), 095303, 2013.

    無法下載圖示 全文公開日期 2027/05/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE