簡易檢索 / 詳目顯示

研究生: Marina Popova
Marina - Popova
論文名稱: Functionalization of graphene oxide for targeted anticancer drug delivery
Functionalization of graphene oxide for targeted anticancer drug delivery
指導教授: Marina Popova
Marina Popova
口試委員: 朱志謙
none
蔡協致
none
Chih-Chien Chu
Chih-Chien Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: graphene oxidetargetingcancerchemotherapy
外文關鍵詞: graphene oxide, targeting, cancer, chemotherapy
相關次數: 點閱:340下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Recently, graphene oxide (GO) has attracted considerable interest to researchers in materials and biomedical science because of its some unique physical and biological properties, such as excellent water dispersibility, biocompatibility, structural stability, high drug loading efficiency and controlled drug release behavior, which are favorable for its potential use for medical imaging and drug delivery. The functionalization of OH-terminated fourth generation poly (amido amine) (PAMAM) dendrimer (DEN-OH) and folic acid (FA) on GO and the loading of anticancer drug doxorubicin (DOX) on functionalized GO are reported in this work. Physical and chemical properties of functionalized GO and also its cytotoxic effects are also described.
    This multifunctional nanocomposite named GO/Den-OH/FA/DOX was obtained as the following procedures: DEN-OH was applied to modify GO surface by connection through the esterification reaction. In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with FA. Finally, the nanocomposite was allowed to load anticancer drug, DOX.
    Nanoscaled GO with particle size around 110 nm was also synthesized by ultrasonication for 4 h and followed by filtration. The obtained NGO was further functionalized with DEN-OH, and then FA as the targeting ligand was connected to the GO surface through chemical reaction between carboxyl group of FA and amino group of DEN-OH. The properties of GO with different particle size are compared in this work.
    The ability for the efficient delivery and the enhanced special cellular uptake into cancer cells is one of major focuses on this research. Cell uptake studies were carried out using DOX-loaded multi-functionalized GO to evaluate their targeted delivery property and toxicity to tumor cells. The results show that this multi-functionalized GO has potential applications for targeted delivery and the controlled release of anticancer drugs.

    Abstract…………………………………………………………………………i Acknowledgements…………………………………………………………….iii Table of contents………………………………………………………….……iv List of figures………………………………………………………………….vii List of tables……………………………………………………………………xi Chapter I Introduction…………………………………………………………..1 I.1. Background…………………………………………………………………1 I.2. Research purposes………………………………………………………......2 Chapter II Experimental work…………………………………………………..4 II.1. Materials…………………………………………………………………...4 II.2. Instrumentation…………………………………………………………….5 II.3. Experimental procedure……………………………………………………5 II.3.1. Functionalization of DEN-OH on GO…………………………….……...5 II.3.2. Functionalization of FA on GO/DEN-OH……………………………….8 II.3.3. Preparation of the final product GO/DEN-OH/FA/DOX………………...9 II.3.4. DOX loading on GO/DEN-OH/FA……………………………………..11 II.3.5. DOX release from GO/DEN-H/FA/DOX……………………………….12 II.3.6. Cell culture and cytotoxicity measurements………………………….…13 Chapter III Results……………………………………………………………...15 III.1. Particle size of GOs…………………………………..………………......15 III.2. Concentration of GOs dispersion………………………………..…….....16 III.3. Characterization of GO/DEN-OH/FA, GO/DEN-OH/FA/DOX, GOs/DEN-OH/FA and GOs/DEN-OH/FA/DOX………………….…………………..…...18 III.3.1. Characterization by UV-Vis spectra……………………………………18 III.3.2. Characterization by FTIR spectra……………………………………...23 III.3.3. Characterization by emission spectra ………………………………….27 III.4. DOX loading on GO/DEN-OH/FA and GOs/DEN-OH/FA……………..42 III.5. DOX release from GO/DEN-OH/FA/DOX and GOs/DEN-OH/FA/DOX………….......................................................................................47 III.6. Cellular uptake and cytotoxicity ………………………………………...52 Chapter IV Discussion…………………………………………………………64 IV.1. Characterization of GO/DEN-OH and GOs/DEN-OH…………………..64 IV.2. Characterization of GO/DEN-OH/FA and GOs/DEN-OH/FA…………..64 IV.3. Characterization of GO/DEN-OH/FA/DOX and GOs/DEN-OH/FA/DOX…………………………………………………………………...65 IV.4. Fluorescent emission from GO/DEN-OH/FA, GOs/DEN-OH/FA, GO/DEN-OH/FA/DOX and GOs/DEN-OH/FA/DOX………………….……..66 IV.5. DOX loading on GO/DEN-OH/FA and GOs/DEN-OH/FA………..…....67 IV.6. DOX release from GO/DEN-OH/FA/DOX and GOs/DEN-OH/FA/DOX……………………………………………………….…………..68 IV.7. Cellular uptake and cytotoxicity ………………………………………..69 Chapter V Conclusions……………………………………………………...…72 References……………………………………………………………………...74

    1. A.J. Shen, D.L. Li, X.J. Cai, C.Y. Dong, H.Q. Dong, H.Y. Wen, G.H. Dai, P.J. Wang, Y.Y. Li. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment, J. Biomed. Mater. Res. 2012, 2499–2506.
    2. X.Y. Yang, Y.S. Chen, Y.S. Wang, X. Huang, Y.F. Ma, Y. Huang, R.C. Yang, H.Q. Duan. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry. 2010, 1039-1041.
    3. L.Z. Feng, Z. Liu. Graphene in biomedicine: opportunities and challenges. Nanomedicine. 2011, 317–324.
    4. P.E. Kintzel, R.T. Dorr, Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat. Rev. 1995, 33–64.
    5. S. Jaracz, J. Chen, L.V. Kuznetsova, I. Ojima. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 2005, 5043–5054.
    6. A.S. Narang, S. Varia, Role of tumor vascular architecture in drug delivery, Adv. Drug Deliv. Rev. 2011, 640–658.
    7. B.D. Chithrani, J. Stewart, C. Allen, D.A. Jaffray. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomed. Nanotechnol. Biol. Med. 2009, 118–127.
    8. B. Sumer, J.M. Gao. Theranostic nanomedicine for cancer. Nanomedicine. 2008, 137–140.
    9. Z.R. Lu, F.R. Ye, A. Vaidya. Polymer platforms for drug delivery and biomedical imaging. J Control Release. 2007, 269–277.
    10. L. Brannon-Peppas, J.O. Blanchette. Nanoparticle and targeted systems for cancer therapy. AdV. Drug DeliVery ReV. 2004, 1649–1659.
    11. V. P. Torchilin, A. N. Lukyanov, Z. Gao, B. Sternberg. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. U.S.A. 2003, 6039–6044.
    12. T. S. Levchenko, L. Rammohan, A. N. Lukyanov, K. R. Whiteman, V. P. Torchilin. Liposome clearance in mice: The effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 2002, 95–102.
    13. X.C. Qin, Z.Y. Guo, Z.M. Liu, W. Zhang, M.M. Wan, B.W. Yang. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. 2012, 610-621.
    14. M. Saad, O.B. Garbuzenko, T. Minko. Co-delivery of siRNA and an anticancerdrug for treatment of multidrug-resistant cancer. Nanomedicine. 2008, 761–776.
    15. K. Yang, S. Zhang, G.X. Zhang, X.M. Sun, S.T. Lee, Z. Liu. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 3318–3323.
    16. K. Yang, J.M. Wan, S. Zhang, B. Tian, Y.J. Zhang, Z. Liu. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012, 2206–2214.
    17. L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang. Functional graphene oxideas a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010, 537–544.
    18. J.L. Li, H.C. Bao, X.L. Hou, L. Sun, X.G. Wang, M. Gu. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescenceimaging and cell therapy. Angew. Chem. Int. Ed. Engl. 2012, 1830–1834.
    19. Y. Yang, Y.M. Zhang, Y. Chen, D. Zhao, J.T. Chen, Y. Liu. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 2012, 4208–4215.
    20. A.S. Wajid, S. Das, F. Irin, H.S.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, M.J. Green. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon. 2012, 526–534.
    21. F.F. Zhou, D. Xing, Z.M. Ou, B.Y. Wu, D.E. Resasco, W.R. Chen. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 2009, 21-29.
    22. Y. Wang, R. Guo, X.Y. Cao, M.W. Shen, X.Y. Shi, Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials. 2011, 3322–3329.
    23. E. Buhleier, W. Wehner and F. Vogtle, “Cascade” – and “Nonskid – Chain – like” Syntheses of molecular Cavity Topologies. Synthesis vol.2 p. 1978, 155-158.
    24. G.R. Newkome, C. N. Moorefield and F. Vogtle, Dendrimers and Dendrons. Concepts, Syntheses, Perspectives. Weinheim: Wiley – VCH. 2001, 75-83.
    25. J. M. J. Frechet and V. A. Tomalia. Dendrimers and Other Dendritic Polymers. Wiley Series in Polymer Science, 2001, 134-141.
    26. X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. S. Chen, Y. Huang. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. 2008, 17554–17558.
    27. S.C. Silverstein, R.M. Steinman, Z.A. Cohn. Endocytosis. Annu Rev Biochem .1977, 269-275.
    28. G. Prencipe , S.M. Tabakman, K Welsher, Z. Liu, A.P. Goodwin, L.Zhang. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009, 374-382.
    29. S. Jiang, Y. Zhang. Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir. 2010, 132-139.
    30. N.W.S. Kam, Z.A. Liu, H.J. Dai. Carbon nanotubes as intracellular transporters forproteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int 2006, 283-290.
    31. X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, Z. Goodwin, S. Zaric, H.J. Dai. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 2008, 203–212.
    32. S.D. Li, L. Huang. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 496–504.
    33. B. Sumer, J.M. Gao. Theranostic nanomedicine for cancer. Nanomedicine. 2008, 137–140.
    34. E.K. Park, S.Y. Kim, S.B. Lee, Y.M. Lee. Folate-conjugated methoxypoly(ethylene glycol)/poly(e-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 2005, 158–168.
    35. I.D. Davis, J. Desai. Clinical use of therapies targeting tumor vasculature and stroma. Cancer Drug Targets. 2008, 498–508.
    36. J.Z. Shang, M. Lin, J.W. Li, A.Wei, T. Yu & G. G. Gurzadyan. The Origin of Fluorescence from Graphene Oxide. 2012, 154-166.
    37. D. Wang, T. Imae and Masao Miki. Fluorescence emission from PAMAM and PPI dendrimers. Journal of Colloid and Interface Science. 2007, 222–227.
    38. D. Wang and T. Imae. Fluorescence Emission from Dendrimers and Its pH Dependence. Research Center for Materials Science. 2004, 464-470.
    39. A. Tyagi, A. Penzkofer. Fluorescence spectroscopic behavior of folic acid. Chemical Physics. 2010, 83–92.
    40. P. Mohan, N. Rapoport. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. NCBI. 2010, 368-379.
    41. H.Q. Hu, J.H. Yu, Y.Y. Li, J. Zhao, H.Q. Dong. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J Biomed Mater Res B. 2012, 141–148.
    42. X.Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, and Y. S. Chen. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. 2008, 17554–17558.
    43. L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 537–544.
    44. Q. Zhang, W.W. Li, T. Kong, R.G. Su, N. Li, Q. Song, M. L. Tang, L.W. Liu, G.S. Cheng. Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon, 2012, 837-849.
    45. Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepic, K.M. Arsikin, S.P. Jovanovic, A.C. Pantovic, M.D. Dramicanin, V.S. Trajkovic. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes, Biomaterials. 2011, 1121–1129.
    46. F.F. Zhou, D. Xing, B.Y. Wu, S.N. Wu, Z.M. Ou, W.R. Chen. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 1677–1681.
    47. L. Tong, Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei, J.X. Cheng. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 3136–3141.
    48. K. Kaaki, K. Herve-Aubert, M. Chiper, A. Shkilnyy, M. Souce, R. Benoit, A. Paillard, P. Dubois, M.L. Saboungi, I. Chourpa. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting, Langmuir. 2012, 1496–1505.
    49. A.S. Wajid, S. Das, F. Irin, H.S.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, M.J. Green. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon. 2012, 526–534.
    50. Y. Yang, Y.M. Zhang, Y. Chen, D. Zhao, J.T. Chen, Y. Liu. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery, Chem. Eur. J. 2012, 4208–4215.
    51. L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010, 537–544.
    52. D. Simberg, , T. Duza, J. H. Park, M. Essler, J. Pilch, L. Zhang, A. Derfus, M. Yang, R. M. Hoffman, S. Bhatia, M. J. Sailor, E. Ruoslahti. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. 2007, 932–936.

    QR CODE