簡易檢索 / 詳目顯示

研究生: 范文陸
Wen-Lu Fan
論文名稱: 胞嘧啶功能化的超分子微胞介導的細胞內化及對癌細胞的化學治療
Cytosine-Functionalized Supramolecular Micelle-Mediated Cell Internalization and Chemotherapy against Cancer Cells
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 蔡協致
Hsieh-Chih Tsai
陳建光
Jem-Kun Chen
李愛薇
Ai-Wei Lee
楊銘乾
Ming-Chien Yang
何郡軒
Jinn-Hsuan Ho
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 178
中文關鍵詞: 胞嘧啶超分子奈米粒子藥物載體氫鍵靶向藥物傳輸
外文關鍵詞: Cytosine, Supramolecular nanoparticle, Drug Carrier, Hydrogen bond, Targeted Drug Delivery
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 X 表目錄 XVIII 縮減表 XIX 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 6 2.1縮水甘油基疊氮化聚合物(Glycidyl azide polymers,GAPs) 6 2.2聚乙二醇(Polyethylene glycol,PEG) 8 2.3胞嘧啶 (4-amino-3H-pyrimidin-2-one,Cytosine) 10 2.4兩親接枝共聚高分子(Amphiphilic graft copolymer) 12 2.5超分子聚合物(Supramolecular polymers) 14 2.5.1超分子作用力-氫鍵(Supramolecular force – Hydrogen bonding) 14 2.6點擊化學(Click Chemistry) 17 2.7阿黴素(Doxorubicin,DOX) 19 2.8高分子奈米載體藥物傳輸系統(Polymeric nanoparticles drug delivery system) 21 2.8.1高分子微胞特性 24 2.8.2高分子微胞-靶向治療 27 2.9文獻回顧總結 28 第三章 實驗材料與方法 29 3.1研究設計 29 3.2實驗材料 30 3.2.1實驗藥品 30 3.2.2實驗溶劑 34 3.2.3細胞實驗藥品 36 3.3實驗儀器與設備參數 39 3.3.1旋轉塗佈機(Spin Coaters) 39 3.3.2桌上型酸鹼度計(pH Meter) 39 3.3.4 CO2培養箱(CO2 incubators) 40 3.3.5斜式旋轉濃縮機(Rotary Evaporation) 40 3.3.6流式細胞分選儀(Flow Cytometers) 41 3.3.7振盪混合器(Vortex Mixer) 42 3.3.8光致螢光光譜儀(Photoluminescence, PL) 42 3.3.9熱重分析儀(Thermogravimetric analysis,TGA) 43 3.3.10紫外線光譜儀(UV/VIis spectrophotometer ,UV/Vis) 43 3.3.11凝膠滲透層析儀(Gel permeation chromatography,GPC) 44 3.3.12螢光顯微鏡(Fluorescence microscope) 45 3.3.13原子力顯微鏡(Atomic Force Microscpoic,AFM) 45 3.3.14動態光散射儀(Dynamic Light Scattering,DLS) 46 3.3.15差示掃描量熱儀(Differential scanning calorimetry,DSC) 47 3.3.16高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope) 47 3.3.17傅里葉轉換紅外光譜(Fourier transform infrared spectroscopy) 48 3.3.18液態核磁共振光譜(Nuclear Magnetic Resonance Spectrometer,NMR) 49 3.3.20旋轉流變儀(Rehometer) 49 3.4實驗合成步驟 51 3.4.1合成Polyepichlorohydrin- Azide(PECH - N3) 51 3.4.2合成Alkyne-functionalized polyethylene glycol (PEG - Alkyne) 52 3.4.3合成【Acetylcytosine-Alkyne】1-(Prop-2-ynyl)-4-acetylaminopyrimidin-2(1H)-one 53 3.4.4合成【Cytosine-Alkyne】1-(Prop-2-ynyl)-4-aminopyrimidin-2(1H)-one 54 3.4.6合成 Polyepichlorohydrin - Polyethylene glycol (PECH - PEG) 56 3.5樣品製備 57 3.5.1高分子微胞製備 57 3.5.2高分子微胞包載藥物製備 57 3.5.3臨界聚集濃度(Critical micelle concentration,CMC) 57 3.5.4 DOX藥物濃度檢量線(DOX drug concentration calibration curve) 58 3.5.5 DOX藥物包覆能力( Drug Loading Capability) 58 3.5.6體外藥物釋放模擬 58 3.5.7微胞穩定性測試 59 3.6細胞生物性實驗製備 60 3.6.1細胞培養基 ( Dulbecco's Modified Eagle Medium,DMEM ) 60 3.6.2細胞解凍培養 60 3.6.3細胞繼代 60 3.6.4數細胞與染色 62 3.6.5細胞生物毒性測試 62 3.6.6螢光顯微鏡製備 63 3.6.7製備1X Annexin-binding buffer 63 3.6.8製備100 µg/mL Propidium iodide(PI) 63 3.6.9流式細胞儀(Flow cytometer) 63 第四章 結果與討論 65 4.1材料鑑定 67 4.2藥物微胞分析 98 4.3生物體外細胞實驗 115 第五章 結論 144 第六章 未來展望 145 第七章 參考文獻 146

    1. Organization, W.H. Cancer. September 2018.
    2. 衛生福利部統計處. https://dep.mohw.gov.tw/DOS/cp-1735-3242-113.html. June 2020
    3. Lu, Y. and P.S. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents. Advanced drug delivery reviews, 2002. 54(5): p. 675-693.
    4. Mikhail, A.S. and C. Allen, Poly (ethylene glycol)-b-poly (ε-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology. Biomacromolecules, 2010. 11(5): p. 1273-1280.
    5. Prins, L.J., D.N. Reinhoudt, and P. Timmerman, Noncovalent Synthesis Using Hydrogen Bonding. Angew Chem Int Ed Engl, 2001. 40(13): p. 2382-2426.
    6. Sun, W.-Y, Multicomponent metal–ligand self-assembly. Current opinion in chemical biology, 2002. 6(6): p. 757-764.
    7. Bravin, C, Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions. Chemical science, 2019. 10(5): p. 1466-1471.
    8. Perlstein, J., The Weak Hydrogen Bond In Structural Chemistry and Biology (International Union of Crystallography, Monographs on Crystallography, 9) By Gautam R. Desiraju (University of Hyderabad) and Thomas Steiner (Freie Universität Berlin). Oxford University Press: Oxford and New York. 1999. xiv+ 507 pp. $150. ISBN 0-19-850252-4. 2001, ACS Publications.
    9. Cheng, C.C, Nucleobase-Functionalized Supramolecular Micelles with Tunable Physical Properties for Efficient Controlled Drug Release. Macromolecular Bioscience, 2016. 16(10): p. 1415-1421.
    10. Cheng, C.C, Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry, 2017. 8(21): p. 3294-3299.
    11. Abebe Alemayehu, Y., B. Tewabe Gebeyehu, and C.-C. Cheng, Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs To Improve the Efficacy of Cancer Chemotherapy. Biomacromolecules, 2019. 20(12): p. 4535-4545.
    12. Cheng, C.-C, Hydrogen-bonded supramolecular micelle-mediated drug delivery enhances the efficacy and safety of cancer chemotherapy. Polymer Chemistry, 2020. 11(16): p. 2791-2798.
    13. Iyer, A.K, Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, 2006. 11(17): p. 812-818.
    14. Zhai, J, Study on influence of terminal structure on mechanical properties of GAP elastomers. Journal of applied polymer science, 2013. 128(4): p. 2319-2324.
    15. Brochu, S. and G. Ampleman, Synthesis and Characterization of Glycidyl Azide Polymers Using Isotactic and Chiral Poly(epichlorohydrin)s. Macromolecules, 1996. 29(17): p. 5539-5545.
    16. Ikeda, T., Glycidyl Triazolyl Polymers: Poly (ethylene glycol) Derivatives Functionalized by Azide–Alkyne Cycloaddition Reaction. Macromolecular rapid communications, 2018. 39(8): p. 1700825.
    17. Murali Mohan, Y., M. Padmanabha Raju, and K. Mohana Raju, Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units. Journal of applied polymer science, 2004. 93(5): p. 2157-2163.
    18. French, A.C., A.L. Thompson, and B.G. Davis, High‐Purity Discrete PEG‐Oligomer Crystals Allow Structural Insight. Angewandte Chemie International Edition, 2009. 48(7): p. 1248-1252.
    19. Godin, B, Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in pharmacological sciences, 2010. 31(5): p. 199-205.
    20. Wiradharma, N, Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today, 2009. 4(4): p. 302-317.
    21. Bae, Y. and K. Kataoka, Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Advanced drug delivery reviews, 2009. 61(10): p. 768-784.
    22. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer, in Nanoscience and technology: A collection of reviews from nature journals. 2010, World Scientific. p. 239-250.
    23. Lutz, J.F., Polymerization of oligo (ethylene glycol)(meth) acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(11): p. 3459-3470.
    24. Inkinen, S, From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules, 2011. 12(3): p. 523-532.
    25. Oh, J.K., Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter, 2011. 7(11): p. 5096-5108.
    26. Xu, Z, Covalent Functionalization of Graphene Oxide with Biocompatible Poly(ethylene glycol) for Delivery of Paclitaxel. ACS Applied Materials & Interfaces, 2014. 6(19): p. 17268-17276.
    27. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 131-135.
    28. Vinogradov, A.E., DNA helix: the importance of being GC‐rich. Nucleic acids research, 2003. 31(7): p. 1838-1844.
    29. Nabel, C.S., S.A. Manning, and R.M. Kohli, The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS chemical biology, 2012. 7(1): p. 20-30.
    30. Smith, N.G. and A. Eyre-Walker, Synonymous codon bias is not caused by mutation bias in G+ C-rich genes in humans. Molecular Biology and Evolution, 2001. 18(6): p. 982-986.
    31. Lafitte, V.G.H, Quadruply Hydrogen Bonded Cytosine Modules for Supramolecular Applications. Journal of the American Chemical Society, 2006. 128(20): p. 6544-6545.
    32. Greco, E, Cytosine modules in quadruple hydrogen bonded arrays. New Journal of Chemistry, 2010. 34(11): p. 2634-2642.
    33. Cheng, C.-C, Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry, 2017. 8(21): p. 3294-3299.
    34. Cheng, C.-C, Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. Nanoscale, 2016. 8(2): p. 723-728.
    35. Cheng, L, pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. Journal of Agricultural and Food Chemistry, 2020. 68(18): p. 5249-5258.
    36. Bader, H, Polymeric monolayers and liposomes as models for biomembranes, in Polymer Membranes. 1985, Springer. p. 1-62.
    37. Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007. 32(8-9): p. 962-990.
    38. Zhu, J., Y. Liao, and W. Jiang, Ring-shaped morphology of “crew-cut” aggregates from ABA amphiphilic triblock copolymer in a dilute solution. Langmuir, 2004. 20(9): p. 3809-3812.
    39. Liu, J, The in vitro biocompatibility of self-assembled hyperbranched copolyphosphate nanocarriers. Biomaterials, 2010. 31(21): p. 5643-5651.
    40. Ko, J, Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. Journal of Controlled Release, 2007. 123(2): p. 109-115.
    41. Xue, Y.-N, Synthesis and self-assembly of amphiphilic poly (acrylic acid-b-DL-lactide) to form micelles for pH-responsive drug delivery. Polymer, 2009. 50(15): p. 3706-3713.
    42. Ma, Y., X. Jiang, and R. Zhuo, Biodegradable and thermosensitive micelles of amphiphilic polyaspartamide derivatives containing aromatic groups for drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2013. 51(18): p. 3917-3924.
    43. Huh, K.M, A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. Journal of Controlled Release, 2008. 126(2): p. 122-129.
    44. Pérez Quiñones, J, Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals. Journal of Agricultural and Food Chemistry, 2018. 66(7): p. 1612-1619.
    45. Riehemann, K, Nanomedicine—challenge and perspectives. Angewandte Chemie International Edition, 2009. 48(5): p. 872-897.
    46. Doerflinger, A, Aptamer-decorated polydiacetylene micelles with improved targeting of cancer cells. International Journal of Pharmaceutics, 2019. 565: p. 59-63.
    47. Kikuchi, A. and T. Nose, Unimolecular-micelle formation of poly(methyl methacrylate)-graft-polystyrene in iso-amyl acetate. Polymer, 1996. 37(26): p. 5889-5896.
    48. Bosnian, A, Supramolecular polymers: from scientific curiosity to technological reality. in Macromolecular Symposia. 2003. Wiley Online Library.
    49. Long, J. and O. Yaghi, Reviewing the latest developments across the interdisciplinary area of metal–organic frameworks from an academic and industrial perspective. Chem. Soc. Rev, 2009. 38: p. 1257-1283.
    50. Song, B, The introduction of π–π stacking moieties for fabricating stable micellar structure: formation and dynamics of disklike micelles. Angewandte Chemie International Edition, 2005. 44(30): p. 4731-4735.
    51. Hofmeier, H, High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. Journal of the American Chemical Society, 2005. 127(9): p. 2913-2921.
    52. Husseini, G.A, DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Letters, 2000. 154(2): p. 211-216.
    53. Pranata, J., S.G. Wierschke, and W.L. Jorgensen, OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. Journal of the American Chemical Society, 1991. 113(8): p. 2810-2819.
    54. Kolb, H.C., M.G. Finn, and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 2001. 40(11): p. 2004-2021.
    55. Hein, J.E. and V.V. Fokin, Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chemical Society Reviews, 2010. 39(4): p. 1302-1315.
    56. Shaygan Nia, A, Click chemistry promoted by graphene supported copper nanomaterials. Chemical Communications, 2014. 50(97): p. 15374-15377.
    57. Yang, J, Synthesis and Reactivity Comparisons of 1-Methyl-3-Substituted Cyclopropene Mini-tags for Tetrazine Bioorthogonal Reactions. Chemistry – A European Journal, 2014. 20(12): p. 3365-3375.
    58. Foundation, T.C.O.R., Anti cancer new drug micro fat body-Doxorubicin.
    59. Blum, R.H. and S.K. Carter, Adriamycin: a new anticancer drug with significant clinical activity. Annals of internal medicine, 1974. 80(2): p. 249-259.
    60. Nakanishi, T, Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release, 2001. 74(1): p. 295-302.
    61. Singal, P.K. and N. Iliskovic, Doxorubicin-induced cardiomyopathy. N Engl J Med, 1998. 339(13): p. 900-5.
    62. Yuan, Q, A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomaterialia, 2008. 4(4): p. 1024-1037.
    63. Lee, E.S., K. Na, and Y.H. Bae, Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release, 2003. 91(1): p. 103-113.
    64. Buyens, K, Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. Journal of Controlled Release, 2012. 158(3): p. 362-370.
    65. Gillies, E.R. and J.M.J. Fréchet, Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today, 2005. 10(1): p. 35-43.
    66. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials, 2005. 26(18): p. 3995-4021.
    67. Phillips, N.C, Liposome-incorporated corticosteroids. II. Therapeutic activity in experimental arthritis. Annals of the rheumatic diseases, 1979. 38(6): p. 553-557.
    68. Kwon, G.S. and K. Kataoka, Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Reviews, 2012. 64: p. 237-245.
    69. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116.
    70. Hrubý, M., C. Konák, and K. Ulbrich, Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release, 2005. 103(1): p. 137-48.
    71. Gao, Z. and A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules, 1993. 26(26): p. 7353-7360.
    72. Malmsten, M. and B. Lindman, Self-assembly in aqueous block copolymer solutions. Macromolecules, 1992. 25(20): p. 5440-5445.
    73. Dayananda, K, pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane). Polymer, 2008. 49(23): p. 4968-4973.
    74. Reddy, T.T, Thermosensitive Transparent Semi-Interpenetrating Polymer Networks for Wound Dressing and Cell Adhesion Control. Biomacromolecules, 2008. 9(4): p. 1313-1321.
    75. Stiborova, M, Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study. Sensors, 2014. 14(12): p. 22982-22997.
    76. Shuai, X, Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release, 2004. 98(3): p. 415-426.
    77. Hrubý, M., Č. Koňák, and K. Ulbrich, Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release, 2005. 103(1): p. 137-148.
    78. Barreleiro, P.C.A. and P. Alexandridis, 13C-NMR Evidence on Amphiphile Lifetime in Reverse (Water-in-Oil) Micelles Formed by a Poloxamer Block Copolymer. Journal of Colloid and Interface Science, 1998. 206(1): p. 357-360.
    79. Marin, A., M. Muniruzzaman, and N. Rapoport, Mechanism of the ultrasonic activation of micellar drug delivery. Journal of Controlled Release, 2001. 75(1): p. 69-81.
    80. Liu, X.-M. and L.-S. Wang, A one-pot synthesis of oleic acid end-capped temperature- and pH-sensitive amphiphilic polymers. Biomaterials, 2004. 25(10): p. 1929-1936.
    81. Soppimath, K.S, Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 2001. 70(1): p. 1-20.
    82. Lee, G.J. and T.-i. Kim, pH-Responsive i-motif Conjugated Hyaluronic Acid/Polyethylenimine Complexes for Drug Delivery Systems. Pharmaceutics, 2019. 11(5): p. 247.
    83. Mohamed Wali, A.R, Tailoring the supramolecular structure of amphiphilic glycopolypeptide analogue toward liver targeted drug delivery systems. International Journal of Pharmaceutics, 2017. 525(1): p. 191-202.
    84. Cheng, C.C, Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Acta Biomaterialia, 2016. 33: p. 194-202.
    85. 楊琇晶,國立台灣科技大學,基於胞嘧啶功能化超分子聚合物的高效細胞培養支架. 2018.
    86. 黃善宥, 國立台灣科技大學,多功能單鏈高分子奈米粒子:易於合成、特異的雙親性及高效的靶向藥物傳遞. 2018.
    87. Galant, O., M. Davidovich‐Pinhas, and C.E. Diesendruck, The Effect of Intramolecular Cross‐Linking on Polymer Interactions in Solution. Macromolecular Rapid Communications, 2018. 39(16): p. 1800407.
    88. Lindsell, W.E, Synthesis of 1, 3-diynes in the purine, pyrimidine, 1, 3, 5-triazine and acridine series. Tetrahedron, 2000. 56(9): p. 1233-1245.
    89. Ray, G.B., I. Chakraborty, and S.P. Moulik, Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. Journal of colloid and interface science, 2006. 294(1): p. 248-254.
    90. Aliabadi, H.M. and A. Lavasanifar, Polymeric micelles for drug delivery. Expert Opinion on Drug Delivery, 2006. 3(1): p. 139-162.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE