簡易檢索 / 詳目顯示

研究生: 李展毅
Chang-Yi Lee
論文名稱: 海藻酸鈉及雙離子型高分子之互穿型網狀水膠製備及做為可分離式微針貼片於經皮給藥之評估
Synthesis interpenetrating polymer network hydrogel from calcium alginate and zwitterionic polymer for separable microneedle patch as transdermal drug carrier
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 林宣因
Suian-Yin Lin
陳玉暄
Yu-Shuan Chen
謝達斌
Dar-Bin Shieh
蔡協致
Hsieh-Chih Tsai
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 高分子微針貼片水膠藥物載體互穿聚合物網絡兩性離子高分子海藻酸鈉
外文關鍵詞: polymer microneedle, hydrogel drug carrier, interpenetrating polymer network, zwitterionic polymer, sodium alginate
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    微針藥物傳遞系統為新型態的經皮藥物給藥方式,具有無痛、藥物使用率高、無傷口感染風險、可傳遞大分子藥物等諸多優點,因此相關的研究正蓬勃發展中。截至目前,市面上微針大多用於美容領域,尚未出現應用於藥物載體的產品。本研究欲以互穿型聚合物網絡製備可分離式高分子微針貼片於水膠藥物載體之開發,藉由天然多醣聚合物海藻酸鈉與兩性離子高分子SBMA組成互穿聚合物網絡水膠,透過兩種網絡的互相纏繞、穿透,提升高分子微針的機械強度、韌性與調控微針的降解性,並評估其生物相容性、藥物釋放行為及穿透皮膚之可行性。
    互穿型水膠以光起始自由基聚合反應交聯SBMA產生共價鍵網絡,再以鈣離子交聯海藻酸鈉產生離子鍵網絡,並透過拉曼與FTIR鑑定水膠鍵結。水膠內部結構與微針表面形貌由SEM觀察,確認微針陣列具有高度一致性;水膠的機械性質則由拉伸試驗測試,確立雙網絡較單一網絡可提升楊氏模數2.4倍,而延展性則提升4倍;水膠微針之應力值藉由壓縮試驗測試,顯示每根針可承受0.633 N的力,已超越文獻之微針應力值並以小鼠皮膚穿透實驗證明微針具有皮膚穿透性。接著,合成帶有雙硫鍵的交聯劑添加於微針之背板水膠,此結構可透過二硫蘇糖醇(DTT)與乙二胺四乙酸(EDTA)混合溶液瓦解,並在30分鐘內瓦解90 %之水膠,具有成為可分離式微針之潛能。水膠生物相容性測試則由細胞存活試驗探討,結果顯示在小鼠正常細胞與小鼠癌細胞皆不具有毒性,細胞存活率最低可高於85 %;微針體外藥物釋放速率可藉由不同製備手法調控,24小時內可分別釋放72 %與76 %的總藥物負載量,微針最長可以釋放超過14天,釋放量達87 %,最少可以釋放7天,釋放量達96 %;藥物半抑制濃度實驗確認微針之藥物負載量足以毒殺細胞,具有療效。本研究透過互穿聚合物網絡水膠成功製備高分子微針,並證實於經皮藥物載體之應用展現極大的潛力。


    Abstract
    Microneedle drug delivery system is a newly type of transdermal drug delivery method, which has many advantages such as painless, less drug losing, no wound infection risk, and can deliver macromolecular drugs. Therefore, microneedle technology has received intensive interests and developed dramatically. As of now, microneedle has only been developed for cosmetic products. There is no mature microneedle as drug carrier product on the market. Here, in this study we designed an interpenetrating polymer network hydrogel to fabricate a separable polymer microneedle patch for transdermal drug delivery by combining the polysaccharide calcium alginate with zwitterionic polymer sulfobetaine methacrylate (poly SBMA) to form the hydrogel. Through the mutual entanglement and penetration of the two networks, the mechanical strength can be improved and the degradation property of the polymer microneedles can be modulated. Here we further evaluated its biocompatibility, drug releasing behavior and the skin penetration efficiency.
    The free radical polymerization was initiated by high energy light source to crosslink the SBMA monomer and to produce the covalent bonding network. The second network was formed in the presence of calcium ions to crosslink the sodium alginate. The inner hydrogel bonding was characterized by Raman and FTIR spectroscopy. The internal structure of the hydrogel and the surface morphology of the microneedles were observed by SEM and confirmed the microneedle array production quality is highly consistent. The mechanical properties of the hydrogel were characterized by tensile tests and discovered the double network significantly increase the Young's modulus by 2.4 times compared to the single network. The ductility can be increased by 4 times. The stress resistance of the hydrogel microneedles was evaluated by compression tests. The results showed that each needle can withstand a maximum force of 0.633 N, suggesting adequate skin penetration potential. Furthermore, we synthesized a crosslinking agent that contained disulfide bond and added into the hydrogel to form the backplane of the microneedle. The hydrogel structure can be disintegrated up to 90% in 30 minutes by a mixed solution of DTT and EDTA. The results indicated that the microneedles formed by the hydrogel have great potential to be separable under control.
    Finally, the biocompatibility of the hydrogel was explored by MTT assay, which showed no detectable toxicity to the normal cells and the cancer cells. In vitro drug release test showed that the microneedle array can release up to 76% of the total loaded drug in 24 hours, and can consistently release for 14 days. The IC50 test results indicated that the drug loaded on the microneedles is sufficient to kill cancer cells. This study successfully fabricated interpenetrating polymer network hydrogel based microneedles, which has great potential as drug carrier for transdermal drug delivery.

    目錄 誌謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2-1 藥物傳遞簡介 3 2-1-1 口服藥物傳遞 3 2-1-2 注射藥物傳遞 3 2-1-3 經皮藥物傳遞 4 2-2 微針貼片(Microneedle Patch) 6 2-2-1 固體實心微針 8 2-2-2 塗佈型微針 9 2-2-3 中空微針 10 2-2-4 高分子微針 11 2-3 水膠 14 2-3-1 化學性交聯水膠 16 2-3-2 物理性交聯水膠 16 2-3-3 互穿聚合物網絡水膠 16 2-4 兩性離子高分子 19 2-4-1 Sulfobetaine methacrylate, SBMA 19 2-5 海藻酸鈉 21 第三章 實驗材料與方法 23 3-1 實驗藥品及耗材 23 3-2 實驗設備 25 3-3 實驗儀器 28 3-4 實驗方法與設計 32 3-4-1 互穿聚合物網絡水膠的製備 32 3-4-2 微針形貌製作 34 3-4-3 可分離式互穿聚合物網絡水膠的製備 35 3-4-4 生物相容性 37 3-4-5 水膠微針載藥與藥物釋放 38 3-5 實驗流程圖 39 第四章 結果與討論 40 4-1 互穿聚合物網絡水膠之鑑定與分析 40 4-1-1 拉曼光譜分析 40 4-1-2 傅立葉轉換紅外線光譜分析 41 4-1-3 掃描式電子顯微鏡成像分析 42 4-1-4 拉伸試驗 43 4-2 微針型貌之鑑定與分析 46 4-2-1 水膠微針之形貌分析 46 4-2-2 微針之機械性質 48 4-2-3 小鼠皮膚穿透試驗 51 4-3 可分離式互穿聚合物網絡水膠 52 4-3-1 雙硫鍵交聯劑之合成與鑑定 52 4-3-2 可分解式水膠微針之性質 55 4-3-3 雙硫鍵交聯劑水膠之瓦解試驗 57 4-4 生物相容性測試 59 4-4-1 小鼠神經膠質瘤癌細胞(CT-2A-Luc cell) 59 4-4-2 小鼠胚胎成纖維細胞(NIH-3T3 cell) 60 4-5 水膠微針載藥與藥物釋放 61 4-5-1 水膠微針之膨潤性 61 4-5-2 體外藥物釋放 62 4-6 藥物半抑制濃度(IC50)試驗 66 4-6-1 小鼠神經膠質瘤癌細胞IC50 66 4-6-2 小鼠胚胎成纖維細胞IC50 68 第五章 結論 70 參考文獻 71  

    參考文獻
    1. Allen, T.M. and P.R. Cullis, Drug delivery systems: entering the mainstream. Science, 2004. 303(5665): p. 1818-1822.
    2. Sastry, S.V., J.R. Nyshadham, and J.A. Fix, Recent technological advances in oral drug delivery–a review. Pharmaceutical science & technology today, 2000. 3(4): p. 138-145.
    3. Brown, M.B., et al., Dermal and transdermal drug delivery systems: current and future prospects. Drug delivery, 2006. 13(3): p. 175-187.
    4. Shiao, J.S., et al., National incidence of percutaneous injury in Taiwan healthcare workers. Research in nursing & health, 2008. 31(2): p. 172-179.
    5. Prausnitz, M.R. and R. Langer, Transdermal drug delivery. Nature biotechnology, 2008. 26(11): p. 1261-1268.
    6. Donnelly, R.F., T.R.R. Singh, and A.D. Woolfson, Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug delivery, 2010. 17(4): p. 187-207.
    7. Henry, S., et al., Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of pharmaceutical sciences, 1998. 87(8): p. 922-925.
    8. Jain, K.K., Drug delivery systems-an overview, in Drug delivery systems. 2008, Springer. p. 1-50.
    9. Ensign, L.M., R. Cone, and J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Advanced drug delivery reviews, 2012. 64(6): p. 557-570.
    10. Scully, C., et al., Oral medicine (stomatology) across the globe: birth, growth, and future. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2016. 121(2): p. 149-157. e5.
    11. Ravi, A.D., et al., Needle free injection technology: a complete insight. International journal of pharmaceutical investigation, 2015. 5(4): p. 192.
    12. Mitragotri, S., Current status and future prospects of needle-free liquid jet injectors. Nature reviews Drug discovery, 2006. 5(7): p. 543-548.
    13. Norsayani, M.Y. and I.N. Hassim, Study on incidence of needle stick injury and factors associated with this problem among medical students. Journal of occupational health, 2003. 45(3): p. 172-178.
    14. Vitorino, C., J. Sousa, and A. Pais, Overcoming the skin permeation barrier: challenges and opportunities. Current Pharmaceutical Design, 2015. 21(20): p. 2698-2712.
    15. Wokovich, A.M., et al., Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics, 2006. 64(1): p. 1-8.
    16. Marwah, H., et al., Permeation enhancer strategies in transdermal drug delivery. Drug delivery, 2016. 23(2): p. 564-578.
    17. Bal, S.M., et al., Advances in transcutaneous vaccine delivery: do all ways lead to Rome? Journal of controlled release, 2010. 148(3): p. 266-282.
    18. Malvey, S., J.V. Rao, and K.M. Arumugam, Transdermal drug delivery system: A mini review. Pharma Innov, 2019. 8: p. 181-197.
    19. Hong, X., et al., Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug design, development and therapy, 2013. 7: p. 945.
    20. Wiedersberg, S. and R.H. Guy, Transdermal drug delivery: 30+ years of war and still fighting! Journal of Controlled Release, 2014. 190: p. 150-156.
    21. Davidson, A., B. Al-Qallaf, and D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chemical Engineering Research and Design, 2008. 86(11): p. 1196-1206.
    22. Morrow, D., et al., Innovative strategies for enhancing topical and transdermal drug delivery. The Open Drug Delivery Journal, 2007. 1(1).
    23. Benson, H.A., Transdermal drug delivery: penetration enhancement techniques. Current drug delivery, 2005. 2(1): p. 23-33.
    24. Mathur, V., Y. Satrawala, and M.S. Rajput, Physical and chemical penetration enhancers in transdermal drug delivery system. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 2014. 4(3).
    25. Pathan, I.B. and C.M. Setty, Chemical penetration enhancers for transdermal drug delivery systems. Tropical Journal of Pharmaceutical Research, 2009. 8(2).
    26. Karande, P. and S. Mitragotri, Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009. 1788(11): p. 2362-2373.
    27. Boucaud, A., et al., Effect of sonication parameters on transdermal delivery of insulin to hairless rats. Journal of controlled release, 2002. 81(1-2): p. 113-119.
    28. Nanda, A., S. Nanda, and N. Khan Ghilzai, Current developments using emerging transdermal technologies in physical enhancement methods. Current drug delivery, 2006. 3(3): p. 233-242.
    29. Larraneta, E., et al., Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 2016. 104: p. 1-32.
    30. Hiraishi, Y., et al., Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. International journal of pharmaceutics, 2013. 441(1-2): p. 570-579.
    31. Prausnitz, M.R., Microneedles for transdermal drug delivery. Advanced drug delivery reviews, 2004. 56(5): p. 581-587.
    32. Yu, J., et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences, 2015. 112(27): p. 8260-8265.
    33. Liu, S., et al., The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Journal of controlled release, 2012. 161(3): p. 933-941.
    34. Zhou, C.-P., et al., Transdermal delivery of insulin using microneedle rollers in vivo. International journal of pharmaceutics, 2010. 392(1-2): p. 127-133.
    35. Kim, Y.-C., J.-H. Park, and M.R. Prausnitz, Microneedles for drug and vaccine delivery. Advanced drug delivery reviews, 2012. 64(14): p. 1547-1568.
    36. DeMuth, P.C., et al., Vaccine delivery with microneedle skin patches in nonhuman primates. Nature biotechnology, 2013. 31(12): p. 1082-1085.
    37. Bhatnagar, S., et al., Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. International journal of pharmaceutics, 2019. 556: p. 263-275.
    38. Mansoor, I., et al., A microneedle-based method for the characterization of diffusion in skin tissue using doxorubicin as a model drug. Biomedical microdevices, 2015. 17(3): p. 61.
    39. Sullivan, S.P., N. Murthy, and M.R. Prausnitz, Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Advanced materials, 2008. 20(5): p. 933-938.
    40. Ye, Y., et al., Polymeric microneedles for transdermal protein delivery. Advanced drug delivery reviews, 2018. 127: p. 106-118.
    41. Rzhevskiy, A.S., et al., Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of controlled release, 2018. 270: p. 184-202.
    42. Ji, J., et al. Microfabricated silicon microneedle array for transdermal drug delivery. in Journal of Physics: Conference Series. 2006. IOP Publishing.
    43. Wilke, N., et al., Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics Journal, 2005. 36(7): p. 650-656.
    44. Bodhale, D., A. Nisar, and N. Afzulpurkar. Design, Fabrication and analysis of silicon microneedles for transdermal drug delivery applications. in The Third International Conference on the Development of Biomedical Engineering in Vietnam. 2010. Springer.
    45. Chabri, F., et al., Microfabricated silicon microneedles for nonviral cutaneous gene delivery. British Journal of Dermatology, 2004. 150(5): p. 869-877.
    46. Cahill, E.M., et al., Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta biomaterialia, 2018. 80: p. 401-411.
    47. Li, J., et al., Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One, 2017. 12(2): p. e0172043.
    48. Boks, M.A., et al., Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. International journal of pharmaceutics, 2015. 491(1-2): p. 375-383.
    49. Jung, P.G., et al., Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching. Sens. Mater, 2008. 20(1): p. 45-53.
    50. Donnelly, R.F., et al., Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharmaceutical research, 2009. 26(11): p. 2513-2522.
    51. Rousche, P. and R. Normann. Chronic intracortical microstimulation of cat auditory cortex using a 100 penetrating electrode array. in Journal of physiology-london. 1997. NY 10011-4211.
    52. Zahn, J.D., et al., Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomedical microdevices, 2000. 2(4): p. 295-303.
    53. You, S.-K., et al., Effect of applying modes of the polymer microneedle-roller on the permeation of L-ascorbic acid in rats. Journal of drug targeting, 2010. 18(1): p. 15-20.
    54. Yan, G., et al., Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. International journal of Pharmaceutics, 2010. 391(1-2): p. 7-12.
    55. Yoon, Y.-K., J.-H. Park, and M.G. Allen, Multidirectional UV lithography for complex 3-D MEMS structures. Journal of microelectromechanical systems, 2006. 15(5): p. 1121-1130.
    56. Ovsianikov, A., et al., Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. International journal of applied ceramic technology, 2007. 4(1): p. 22-29.
    57. Gill, H.S. and M.R. Prausnitz, Coated microneedles for transdermal delivery. Journal of controlled release, 2007. 117(2): p. 227-237.
    58. Gill, H.S. and M.R. Prausnitz, Coating formulations for microneedles. Pharmaceutical research, 2007. 24(7): p. 1369-1380.
    59. Van der Maaden, K., W. Jiskoot, and J. Bouwstra, Microneedle technologies for (trans) dermal drug and vaccine delivery. Journal of controlled release, 2012. 161(2): p. 645-655.
    60. Koutsonanos, D.G., et al., Transdermal influenza immunization with vaccine-coated microneedle arrays. PloS one, 2009. 4(3): p. e4773.
    61. Kim, Y.-C., et al., Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. Journal of controlled release, 2010. 142(2): p. 187-195.
    62. Zhu, Q., et al., Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proceedings of the National Academy of Sciences, 2009. 106(19): p. 7968-7973.
    63. Andrianov, A.K., et al., Poly [di (carboxylatophenoxy) phosphazene] is a potent adjuvant for intradermal immunization. Proceedings of the national academy of sciences, 2009. 106(45): p. 18936-18941.
    64. Bystrova, S. and R. Luttge, Micromolding for ceramic microneedle arrays. Microelectronic engineering, 2011. 88(8): p. 1681-1684.
    65. McGrath, M.G., et al., Determination of parameters for successful spray coating of silicon microneedle arrays. International journal of pharmaceutics, 2011. 415(1-2): p. 140-149.
    66. Kim, Y.-C., et al., Formulation of microneedles coated with influenza virus-like particle vaccine. Aaps Pharmscitech, 2010. 11(3): p. 1193-1201.
    67. Kim, Y.-C., et al., Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. The Journal of infectious diseases, 2010. 201(2): p. 190-198.
    68. Han, M., et al., Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sensors and Actuators B: Chemical, 2009. 137(1): p. 274-280.
    69. Ita, K., Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics, 2015. 7(3): p. 90-105.
    70. Yu, L., et al., A microfabricated electrode with hollow microneedles for ECG measurement. Sensors and Actuators A: Physical, 2009. 151(1): p. 17-22.
    71. Mohan, A.V., et al., Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors and Bioelectronics, 2017. 91: p. 574-579.
    72. El-Laboudi, A., et al., Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes technology & therapeutics, 2013. 15(1): p. 101-115.
    73. Chua, B., et al., Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sensors and Actuators A: Physical, 2013. 203: p. 373-381.
    74. Jina, A., et al., Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. Journal of diabetes science and technology, 2014. 8(3): p. 483-487.
    75. Teo, M.A.L., et al., In vitro and in vivo characterization of MEMS microneedles. Biomedical microdevices, 2005. 7(1): p. 47-52.
    76. Stoeber, B. and D. Liepmann, Arrays of hollow out-of-plane microneedles for drug delivery. Journal of microelectromechanical systems, 2005. 14(3): p. 472-479.
    77. Zhang, P., C. Dalton, and G.A. Jullien, Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsystem technologies, 2009. 15(7): p. 1073-1082.
    78. Wilke, N., et al., Silicon microneedle electrode array with temperature monitoring for electroporation. Sensors and Actuators A: Physical, 2005. 123: p. 319-325.
    79. Mukerjee, E., et al., Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A: Physical, 2004. 114(2-3): p. 267-275.
    80. Ma, B., et al. A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery. in 56th Electronic Components and Technology Conference 2006. 2006. IEEE.
    81. Baron, N., et al., Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw. Microsystem technologies, 2008. 14(9-11): p. 1475-1480.
    82. Amirouche, F., Y. Zhou, and T. Johnson, Current micropump technologies and their biomedical applications. Microsystem technologies, 2009. 15(5): p. 647-666.
    83. Martanto, W., et al., Microinfusion using hollow microneedles. Pharmaceutical research, 2006. 23(1): p. 104-113.
    84. Gupta, J., E.I. Felner, and M.R. Prausnitz, Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes technology & therapeutics, 2009. 11(6): p. 329-337.
    85. Wang, M., L. Hu, and C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab on a Chip, 2017. 17(8): p. 1373-1387.
    86. Lee, J.W., J.-H. Park, and M.R. Prausnitz, Dissolving microneedles for transdermal drug delivery. Biomaterials, 2008. 29(13): p. 2113-2124.
    87. Chen, X., et al., Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. Journal of controlled release, 2010. 148(3): p. 327-333.
    88. Ito, Y., et al., Self-dissolving microneedles for the percutaneous absorption of EPO in mice. Journal of drug targeting, 2006. 14(5): p. 255-261.
    89. Park, J.-H., et al., Polymer particle-based micromolding to fabricate novel microstructures. Biomedical microdevices, 2007. 9(2): p. 223-234.
    90. Ito, Y., et al., Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chemical and Pharmaceutical Bulletin, 2010. 58(4): p. 458-463.
    91. Chu, L.Y. and M.R. Prausnitz, Separable arrowhead microneedles. Journal of controlled release, 2011. 149(3): p. 242-249.
    92. Lee, K., C.Y. Lee, and H. Jung, Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 2011. 32(11): p. 3134-3140.
    93. Kim, J.D., et al., Droplet-born air blowing: novel dissolving microneedle fabrication. Journal of controlled release, 2013. 170(3): p. 430-436.
    94. Lee, I.C., et al., Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. Journal of Biomedical Materials Research Part A, 2017. 105(1): p. 84-93.
    95. Ko, P.-T., et al., Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. Journal of the Taiwan Institute of Chemical Engineers, 2015. 51: p. 1-8.
    96. Sun, W., et al., Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications. Acta biomaterialia, 2013. 9(8): p. 7767-7774.
    97. Chen, S., et al., Smart Microneedle Fabricated with Silk Fibroin Combined Semi-interpenetrating Network Hydrogel for Glucose-Responsive Insulin Delivery. ACS Biomaterials Science & Engineering, 2019. 5(11): p. 5781-5789.
    98. Chen, M.-C., et al., Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules, 2012. 13(12): p. 4022-4031.
    99. Kim, M., B. Jung, and J.-H. Park, Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials, 2012. 33(2): p. 668-678.
    100. Lee, K.J., et al., Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. Journal of Controlled Release, 2014. 192: p. 174-181.
    101. Choi, C.K., et al., Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013. 83(2): p. 224-233.
    102. Chu, L.Y., S.-O. Choi, and M.R. Prausnitz, Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. Journal of pharmaceutical sciences, 2010. 99(10): p. 4228-4238.
    103. Peppas, N.A., Hydrogels in medicine and pharmacy: fundamentals. Vol. 1. 2019: CRC press.
    104. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research, 2015. 6(2): p. 105-121.
    105. Hoffman, A.S., Hydrogels for biomedical applications. Advanced drug delivery reviews, 2012. 64: p. 18-23.
    106. Li, X., et al., Functional hydrogels with tunable structures and properties for tissue engineering applications. Frontiers in chemistry, 2018. 6: p. 499.
    107. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
    108. Lee, J.-H. and H.-W. Kim, Emerging properties of hydrogels in tissue engineering. Journal of tissue engineering, 2018. 9: p. 2041731418768285.
    109. Koehler, J., F.P. Brandl, and A.M. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 2018. 100: p. 1-11.
    110. Kamoun, E.A., E.-R.S. Kenawy, and X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, 2017. 8(3): p. 217-233.
    111. Hyon, S.-H., et al., Poly (vinyl alcohol) hydrogels as soft contact lens material. Journal of Biomaterials Science, Polymer Edition, 1994. 5(5): p. 397-406.
    112. Schein, O.D., et al., The incidence of microbial keratitis among wearers of a 30-day silicone hydrogel extended-wear contact lens. Ophthalmology, 2005. 112(12): p. 2172-2179.
    113. Kim, S.W., Y.H. Bae, and T. Okano, Hydrogels: swelling, drug loading, and release. Pharmaceutical research, 1992. 9(3): p. 283-290.
    114. Gupta, P., K. Vermani, and S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug discovery today, 2002. 7(10): p. 569-579.
    115. Jeong, B., Y.H. Bae, and S.W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of controlled release, 2000. 63(1-2): p. 155-163.
    116. Ladet, S., L. David, and A. Domard, Multi-membrane hydrogels. Nature, 2008. 452(7183): p. 76-79.
    117. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polymer Journal, 1990. 22(5): p. 355-360.
    118. Hou, Y., et al., Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials, 2008. 29(22): p. 3175-3184.
    119. Tang, L., W. Liu, and G. Liu, High‐Strength Hydrogels with Integrated Functions of H‐bonding and Thermoresponsive Surface‐Mediated Reverse Transfection and Cell Detachment. Advanced Materials, 2010. 22(24): p. 2652-2656.
    120. Haraguchi, K., T. Takehisa, and M. Ebato, Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 2006. 7(11): p. 3267-3275.
    121. Kim, J.J. and K. Park, Smart hydrogels for bioseparation. Bioseparation, 1998. 7(4-5): p. 177-184.
    122. Liang, Y.Y., et al., Embedding Magnetic Nanoparticles into Polysaccharide‐Based Hydrogels for Magnetically Assisted Bioseparation. ChemPhysChem, 2007. 8(16): p. 2367-2372.
    123. Huang, R., et al., Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation. Journal of Membrane Science, 2009. 336(1-2): p. 42-49.
    124. Quinn, C.A., R.E. Connor, and A. Heller, Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials, 1997. 18(24): p. 1665-1670.
    125. Li, L., et al., A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano letters, 2015. 15(2): p. 1146-1151.
    126. Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev, 2008. 60(15): p. 1638-49.
    127. Gyles, D.A., et al., A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal, 2017. 88: p. 373-392.
    128. Akhtar, M.F., M. Hanif, and N.M. Ranjha, Methods of synthesis of hydrogels… A review. Saudi Pharmaceutical Journal, 2016. 24(5): p. 554-559.
    129. Laftah, W.A., S. Hashim, and A.N. Ibrahim, Polymer hydrogels: A review. Polymer-Plastics Technology and Engineering, 2011. 50(14): p. 1475-1486.
    130. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339.
    131. Soppimath, K.S., et al., Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug development and industrial pharmacy, 2002. 28(8): p. 957-974.
    132. Myung, D., et al., Progress in the development of interpenetrating polymer network hydrogels. Polymers for advanced technologies, 2008. 19(6): p. 647-657.
    133. Roland, C., Interpenetrating Polymer Networks (IPN Q1): Structure and Mechanical Behavior. 2013.
    134. Gong, J.P., et al., Double‐network hydrogels with extremely high mechanical strength. Advanced materials, 2003. 15(14): p. 1155-1158.
    135. Chen, Q., et al., Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 2015. 3(18): p. 3654-3676.
    136. Zoratto, N. and P. Matricardi, Semi-IPNs and IPN-based hydrogels, in Polymeric Gels. 2018, Elsevier. p. 91-124.
    137. Karak, N., 1-Fundamentals of polymers. Vegetable Oil-Based Polymers, 2012: p. 1-30.
    138. Manna, S., M. Manna, and S. Jana, Interpenetrating Polymer Network in Microparticulate Systems: Drug Delivery and Biomedical Application, in Interpenetrating Polymer Network: Biomedical Applications. 2020, Springer. p. 1-23.
    139. Zheng, L., et al., Applications of zwitterionic polymers. Reactive and Functional Polymers, 2017. 118: p. 51-61.
    140. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal, 2014. 46(8): p. 436-443.
    141. Jin, Q., et al., Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery. Colloids Surf B Biointerfaces, 2014. 124: p. 80-6.
    142. Li, M.-Z., et al., Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. Journal of membrane science, 2012. 405: p. 141-148.
    143. Chang, Y., et al., A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
    144. Kim, N.K., et al., Synthesis and characterization of biocompatible copolymers containing plant-based cardanol and zwitterionic groups for antifouling and bactericidal coating applications. European Polymer Journal, 2019. 112: p. 688-695.
    145. Lalani, R. and L. Liu, Electrospun zwitterionic poly (sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules, 2012. 13(6): p. 1853-1863.
    146. Zhai, S., et al., Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polymer Chemistry, 2014. 5(4): p. 1285-1297.
    147. Wang, L., et al., Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 2003. 24(20): p. 3475-3481.
    148. Hunt, N.C. and L.M. Grover, Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology letters, 2010. 32(6): p. 733-742.
    149. Additives, E.P.o.F., et al., Re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) as food additives. EFSA Journal, 2017. 15(11): p. e05049.
    150. Zia, K.M., et al., Alginate based polyurethanes: A review of recent advances and perspective. International journal of biological macromolecules, 2015. 79: p. 377-387.
    151. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Progress in polymer science, 2012. 37(1): p. 106-126.
    152. LeRoux, M.A., F. Guilak, and L.A. Setton, Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 1999. 47(1): p. 46-53.
    153. Bajpai, S. and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004. 59(2): p. 129-140.
    154. Abd El-Ghaffar, M., et al., pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydrate polymers, 2012. 89(2): p. 667-675.
    155. Mackiewicz, M., et al., Nanohydrogel with N,N'-bis(acryloyl)cystine crosslinker for high drug loading. Int J Pharm, 2017. 523(1): p. 336-342.
    156. Sivashanmugan, K., et al., An anti-fouling nanoplasmonic SERS substrate for trapping and releasing a cationic fluorescent tag from human blood solution. Nanoscale, 2017. 9(8): p. 2865-2874.
    157. Schmid, T., et al., Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Analytical and bioanalytical chemistry, 2008. 391(5): p. 1907-1916.
    158. Mackiewicz, M., et al., Stable and degradable microgels linked with cystine for storing and environmentally triggered release of drugs. Journal of Materials Chemistry B, 2015. 3(36): p. 7262-7270.
    159. Durig, J., R. Berry, and P. Groner, Vibrational spectra and assignments, normal coordinate analyses, abinitio calculations, and conformational stability of the propenoyl halides. The Journal of chemical physics, 1987. 87(11): p. 6303-6322.
    160. Liang, G.-X., et al., Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots. Nanotechnology, 2009. 20(41): p. 415103.
    161. Wan, L.S., P.W. Heng, and L.F. Wong, Relationship between swelling and drug release in a hydrophilic matrix. Drug development and industrial pharmacy, 1993. 19(10): p. 1201-1210.
    162. Varshosaz, J. and N. Koopaie, Cross-linked poly (vinyl alcohol) hydrogel: Study of swelling and drug release behaviour. Iranian Polymer Journal, 2002. 11(2): p. 123-131.
    163. Hajian, R., N. Shams, and M. Mohagheghian, Study on the interaction between doxorubicin and deoxyribonucleic acid with the use of methylene blue as a probe. Journal of the Brazilian Chemical Society, 2009. 20(8): p. 1399-1405.
    164. Sebaugh, J., Guidelines for accurate EC50/IC50 estimation. Pharmaceutical statistics, 2011. 10(2): p. 128-134.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE