簡易檢索 / 詳目顯示

研究生: 陳旭心
Shiu-Shin Chen
論文名稱: 包覆雙硫侖與超順磁性氧化鐵海藻膠微米粒子的製備及其對卵巢癌細胞溫熱化學治療成效評估
A preparation of Disulfiram and superparamagnetic iron oxide encapsulating alginate microparticles and their in vitro efficacy of hyperthermic chemotherapy toward ovarian cancer cells
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 謝明發
Ming-Fa Hsieh
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 雙硫侖海藻酸鈉藥物載體卵巢癌電噴霧
外文關鍵詞: disulfiram, sodium alginate, drug carrier, ovarian cancer, electrospray
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 1 中英文縮寫對照表 3 第1章、緒論 4 1.1研究動機與目的 4 1.2實驗流程 5 第2章、文獻回顧 6 2.1卵巢癌 6 2.1.1卵巢癌的診斷 6 2.1.2卵巢癌的治療 7 2.2老藥新用 7 2.2.1雙硫侖(Disulfiram) 8 2.3熱治療 8 2.4藥物傳輸系統 9 2.5藥物載體材料 10 2.5.1海藻酸鈉(Alginate) 10 2.6電噴霧(Electrospray) 11

    [1] "Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention (PDQ®)–Patient Version, 2019.
    [2] F. Ren, J. Shen, H. Shi, F. J. Hornicek, Q. Kan, and Z. Duan, "Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1866, pp. 266-275, 2016.
    [3] C. Stewart, C. Ralyea, and S. Lockwood, "Ovarian Cancer: An Integrated Review," Semin Oncol Nurs, vol. 35, pp. 151-156, 2019.
    [4] M. Mara H Rendi, PhD, "Epithelial carcinoma of the ovary, fallopian tube, and peritoneum: Histopathology, 2019.
    [5] W. H. Organization, "World Cancer Report 2014," p. Chapter 5.12. .
    [6] T. T. Gong, Q. J. Wu, E. Vogtmann, B. Lin, and Y. L. Wang, "Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies," Int J Cancer, vol. 132, pp. 2894-900, 2013.
    [7] A. Parvatala, R. R. Babu, N. B. Rao, and K. Narasimhulu, "Study of Ovarian Neoplastic Lesions," IOSR Journal of Dental and Medical Sciences vol. 15, pp. 32-38, 2016.
    [8] P. J. v. D. Jurgen M.J. Piek, and René H.M. Verheijen, "Ovarian Carcinogenesis An Alternative Hypothesis," Advances in Experimental Medicine and Biology, vol. 622, pp. 79-87, 2008.
    [9] G. C. Jayson, E. C. Kohn, H. C. Kitchener, and J. A. Ledermann, "Ovarian cancer," The Lancet, vol. 384, pp. 1376-1388, 2014.
    [10] R. De Angelis, M. Sant, M. P. Coleman, S. Francisci, P. Baili, D. Pierannunzio, et al., "Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study," The Lancet Oncology, vol. 15, pp. 23-34, 2014.
    [11] W. A. Cliby, M. A. Powell, N. Al-Hammadi, L. Chen, J. Philip Miller, P. Y. Roland, et al., "Ovarian cancer in the United States: contemporary patterns of care associated with improved survival," Gynecol Oncol, vol. 136, pp. 11-7, 2015.
    [12] X. Zheng, S. Chen, L. Li, X. Liu, X. Liu, S. Dai, et al., "Evaluation of HE4 and TTR for diagnosis of ovarian cancer: Comparison with CA-125," J Gynecol Obstet Hum Reprod, vol. 47, pp. 227-230, 2018.
    [13] S. Lheureux, C. Gourley, I. Vergote, and A. M. Oza, "Epithelial ovarian cancer," The Lancet, vol. 393, pp. 1240-1253, 2019.
    [14] B. Orr and R. P. Edwards, "Diagnosis and Treatment of Ovarian Cancer," Hematol Oncol Clin North Am, vol. 32, pp. 943-964, 2018.
    [15] G. O. S. Coyne, R. Piekarz, and A. P. Chen, "New Treatment Options for Ovarian Cancer," pp. 533-540, 2019.
    [16] R. W. Naumann, R. L. Coleman, J. Brown, and K. N. Moore, "Phase III trials in ovarian cancer: The evolving landscape of front line therapy," Gynecol Oncol, 2019.
    [17] S. Armbruster, R. L. Coleman, and J. A. Rauh-Hain, "Management and Treatment of Recurrent Epithelial Ovarian Cancer," Hematol Oncol Clin North Am, vol. 32, pp. 965-982, 2018.
    [18] N. Nosengo, "New tricks for old drugs," Nature, vol. 534, pp. 314–316, 2016.
    [19] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, "Innovation in the pharmaceutical industry: New estimates of R&D costs," J Health Econ, vol. 47, pp. 20-33, 2016.
    [20] M. Garcia-Serradilla, C. Risco, and B. Pacheco, "Drug repurposing for new, efficient, broad spectrum antivirals," Virus Res, vol. 264, pp. 22-31, 2019.
    [21] P. Nowak-Sliwinska, L. Scapozza, and A. R. i. Altaba, "Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer," Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2019.
    [22] M. Simsek, B. Meijer, A. A. van Bodegraven, N. K. de Boer, and C. J. Mulder, "Finding hidden treasures in old drugs: the challenges and importance of licensing generics," Drug discovery today, vol. 23, pp. 17-21, 2018.
    [23] A. C. Berger, S. Olson, S. G. Johnson, and S. H. Beachy, Drug repurposing and repositioning: workshop summary: National Academies Press, 2014.
    [24] M. M. Braun, S. Farag-El-Massah, K. Xu, and T. R. Coté, "Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years," Nature Reviews Drug Discovery, vol. 9, p.519, 2010.
    [25] M. Boolell, M. Allen, S. Ballard, S. Gepi-Attee, G. Muirhead, A. Naylor, et al., "Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction," International journal of impotence research, vol. 8, pp. 47-52, 1996.
    [26] H. S. Gns, S. Gr, M. Murahari, and M. Krishnamurthy, "An update on Drug Repurposing: Re-written saga of the drug's fate," Biomed Pharmacother, vol. 110, pp. 700-716, 2019.
    [27] R. F. DeBusk, C. J. Pepine, D. B. Glasser, A. Shpilsky, H. DeRiesthal, and M. Sweeney, "Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease," The American journal of cardiology, vol. 93, pp. 147-153, 2004.
    [28] K. Grundmann, K. Jaschonek, B. Kleine, J. Dichgans, and H. Topka, "Aspirin non-responder status in patients with recurrent cerebral ischemic attacks," Journal of neurology, vol. 250, pp. 63-66, 2003.
    [29] J. K. Amory and D. W. Amory, "Dosing frequency of aspirin and prevention of heart attacks and strokes," The American journal of medicine, vol. 120, p. e5, 2007.
    [30] J. Hald and E. Jacobsen, "A drug sensitising the organism to ethyl alcohol," The Lancet, vol. 252, pp. 1001-1004, 1948.
    [31] K. Hochsattel and P. Brieger, "[Disulfiram in outpatient treatment of alcohol dependency]," Nervenarzt, vol. 87, pp. 506-12, 2016.
    [32] J. J. Lipsky, M. L. Shen, and S. Naylor, "Overview—in vitro inhibition of aldehyde dehydrogenase by disulfiram and metabolites," Chemico-biological interactions, vol. 130, pp. 81-91, 2001.
    [33] H. He, E. Markoutsa, J. Li, and P. Xu, "Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly," Acta Biomater, vol. 68, pp. 113-124, 2018.
    [34] M. Wickstrom, K. Danielsson, L. Rickardson, J. Gullbo, P. Nygren, A. Isaksson, et al., "Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients," Biochem Pharmacol, vol. 73, pp. 25-33, 2007.
    [35] L. Zhang, B. Tian, Y. Li, T. Lei, J. Meng, L. Yang, et al., "A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy," ACS Appl Mater Interfaces, vol. 7, pp. 25147-61, 2015.
    [36] Y. A. Rezk, K. Yang, S. Bai, K. McLean, C. Johnston, R. K. Reynolds, et al., "Disulfiram’s Antineoplastic Effects on Ovarian Cancer," Journal of Cancer Therapy, vol. 06, pp. 1196-1205, 2015.
    [37] Y. C. Wang, Y. T. Yo, H. Y. Lee, Y. P. Liao, T. K. Chao, P. H. Su, et al., "ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome," Am J Pathol, vol. 180, pp. 1159-69, 2012.
    [38] R. Lindahl, "Aldehyde dehydrogenases and their role in carcinogenesis," Critical reviews in biochemistry and molecular biology, vol. 27, pp. 283-335, 1992.
    [39] F. Austin, A. Mavanur, M. Sathaiah, J. Steel, D. Lenzner, L. Ramalingam, et al., "Aggressive management of peritoneal carcinomatosis from mucinous appendiceal neoplasms," Ann Surg Oncol, vol. 19, pp. 1386-93, 2012.
    [40] M. Shinkai, "Functional magnetic particles for medical application," Journal of bioscience and bioengineering, vol. 94, pp. 606-613, 2002.
    [41] P. Das, M. Colombo, and D. Prosperi, "Recent advances in magnetic fluid hyperthermia for cancer therapy," Colloids Surf B Biointerfaces, vol. 174, pp. 42-55, 2019.
    [42] A. F. Abu-Bakr and A. Y. Zubarev, "Hyperthermia in a system of interacting ferromagnetic particles under rotating magnetic field," Journal of Magnetism and Magnetic Materials, vol. 477, pp. 404-407, 2019.
    [43] A. Farzin, S. Hassan, R. Emadi, S. A. Etesami, and J. Ai, "Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy," Mater Sci Eng C Mater Biol Appl, vol. 98, pp. 930-938, 2019.
    [44] S. Toraya-Brown and S. Fiering, "Local tumour hyperthermia as immunotherapy for metastatic cancer," Int J Hyperthermia, vol. 30, pp. 531-9, 2014.
    [45] A. Y. Zubarev, L. Y. Iskakova, and A. F. Abu-Bakr, "Magnetic hyperthermia in solid magnetic colloids," Physica A: Statistical Mechanics and its Applications, vol. 467, pp. 59-66, 2017.
    [46] M. Harabech, J. Leliaert, A. Coene, G. Crevecoeur, D. Van Roost, and L. Dupré, "The effect of the magnetic nanoparticle’s size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 426, pp. 206-210, 2017.
    [47] W. R. Zhuang, Y. Wang, P. F. Cui, L. Xing, J. Lee, D. Kim, et al., "Applications of pi-pi stacking interactions in the design of drug-delivery systems," J Control Release, vol. 294, pp. 311-326, 2019.
    [48] Y. L. Liu, D. Chen, P. Shang, and D. C. Yin, "A review of magnet systems for targeted drug delivery," J Control Release, vol. 302, pp. 90-104, 2019.
    [49] V. R. Sinha and A. Trehan, "Biodegradable microspheres for protein delivery," Journal of Controlled Release, vol. 90, pp. 261-280, 2003.
    [50] P. Davoodi, L. Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, et al., "Drug delivery systems for programmed and on-demand release," Adv Drug Deliv Rev, vol. 132, pp. 104-138, 2018.
    [51] S. Kajdič, O. Planinšek, M. Gašperlin, and P. Kocbek, "Electrospun nanofibers for customized drug-delivery systems," Journal of Drug Delivery Science and Technology, vol. 51, pp. 672-681, 2019.
    [52] M. T. Taghizadeh, H. Ashassi-Sorkhabi, R. Afkari, and A. Kazempour, "Cross-linked chitosan in nano and bead scales as drug carriers for betamethasone and tetracycline," Int J Biol Macromol, vol. 131, pp. 581-588, 2019.
    [53] M. Ge, W. Tang, M. Du, G. Liang, G. Hu, and S. M. Jahangir Alam, "Research on 5-fluorouracil as a drug carrier materials with its in vitro release properties on organic modified magadiite," Eur J Pharm Sci, vol. 130, pp. 44-53, 2019.
    [54] J. P. Paques, E. van der Linden, C. J. van Rijn, and L. M. Sagis, "Preparation methods of alginate nanoparticles," Adv Colloid Interface Sci, vol. 209, pp. 163-71, 2014.
    [55] F. Sarei, N. M. Dounighi, H. Zolfagharian, P. Khaki, and S. M. Bidhendi, "Alginate nanoparticles as a promising adjuvant and vaccine delivery system," Indian journal of pharmaceutical sciences, vol. 75, p. 442, 2013.
    [56] D. Kühbeck, J. Mayr, M. Häring, M. Hofmann, F. Quignard, and D. D. Díaz, "Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates," New Journal of Chemistry, vol. 39, pp. 2306-2315, 2015.
    [57] A. M. Nikoo, R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker, "Electrospray-assisted encapsulation of caffeine in alginate microhydrogels," Int J Biol Macromol, vol. 116, pp. 208-216, 2018.
    [58] T. Khampieng, P. Aramwit, and P. Supaphol, "Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy," Int J Biol Macromol, vol. 80, pp. 636-43, 2015.
    [59] M. Wang and Q. Zhao, "Electrospinning and Electrospray for Biomedical Applications," pp. 330-344, 2019.
    [60] G. I. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964.
    [61] N. A. Brown, Y. Zhu, G. K. German, X. Yong, and P. R. Chiarot, "Electrospray deposit structure of nanoparticle suspensions," Journal of Electrostatics, vol. 90, pp. 67-73, 2017.
    [62] R. M. D. Soares, N. M. Siqueira, M. P. Prabhakaram, and S. Ramakrishna, "Electrospinning and electrospray of bio-based and natural polymers for biomaterials development," Mater Sci Eng C Mater Biol Appl, vol. 92, pp. 969-982, 2018.
    [63] S. Kavadiya and P. Biswas, "Electrospray deposition of biomolecules: Applications, challenges, and recommendations," Journal of Aerosol Science, vol. 125, pp. 182-207, 2018.
    [64] J. C. Stockert, A. Blazquez-Castro, M. Canete, R. W. Horobin, and A. Villanueva, "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets," Acta Histochem, vol. 114, pp. 785-96, 2012.
    [65] H. Daemi and M. Barikani, "Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles," Scientia Iranica, vol. 19, pp. 2023-2028, 2012.
    [66] J. Mirtic, J. Ilas, and J. Kristl, "Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics," Carbohydr Polym, vol. 181, pp. 93-102, 2018.

    無法下載圖示 全文公開日期 2024/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE